Skip to main content
Log in

Light-modulated anomalous Andreev reflection in a graphene-based superconducting junction

  • Regular Article - Solid State and Materials
  • Published:
The European Physical Journal B Aims and scope Submit manuscript

Abstract

We investigate the Andreev reflection across a graphene-based superconducting junction irradiated by the linearly polarized off-resonant light. The band structure of graphene is modified by the linearly polarized light, which leads to the anisotropic band structure of graphene. In the coaction of the linearly polarized light and the direction of superconducting junction, three anomalous phenomena, consisting of the Andreev retroreflection (specular Andreev reflection) in the case of interband (intraband) conversion of electron–hole and the nonzero incident angle of perfect Andreev reflection, happen. These three anomalous phenomena arise from the same reason that the relation between wavevector and velocity in the isotropic band structure is broken up in the light-induced anisotropic band structure. Our finding provides an alternative and flexible method to modulate Andreev reflection.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data Availability Statement

This manuscript has no associated data or the data will not be deposited. [Authors’ comment: By using the values of parameters in Figs. 2 and 3, the date can be easily obtained by common software such as Matlab and C++.]

References

  1. A.F. Andreev, Sov. Phys. JETP 19, 1228 (1964)

    Google Scholar 

  2. C.W.J. Beenakker, Phys. Rev. Lett. 97, 067007 (2006)

    Article  ADS  Google Scholar 

  3. T. Ludwig, Phys. Rev. B 75, 195322 (2007)

    Article  ADS  Google Scholar 

  4. Q. Zhang, D. Fu, B. Wang, R. Zhang, D.Y. Xing, Phys. Rev. Lett. 101, 047005 (2008)

    Article  ADS  Google Scholar 

  5. S.-G. Cheng, Y. Xing, J. Wang, Q.-F. Sun, Phys. Rev. Lett. 103, 167003 (2009)

    Article  ADS  Google Scholar 

  6. D. Rainis, F. Taddei, F. Dolcini, M. Polini, R. Fazio, Phys. Rev. B 79, 115131 (2009)

    Article  ADS  Google Scholar 

  7. D.A. Manjarrés, W.J. Herrera, S. Gómez, Physica B 404, 2799–2801 (2009)

    Article  ADS  Google Scholar 

  8. Y.-L. Yang, C. Bai, X.-D. Zhang, Eur. Phys. J. B 72, 217–223 (2009)

    Article  ADS  Google Scholar 

  9. S.-G. Cheng, H. Zhang, Q.-F. Sun, Phys. Rev. B 83, 235403 (2011)

    Article  ADS  Google Scholar 

  10. J. Schelter, B. Trauzettel, P. Recher, Phys. Rev. Lett. 108, 106603 (2012)

    Article  ADS  Google Scholar 

  11. K. Komatsu, C. Li, S. Autier-Laurent, H. Bouchiat, S. Guéron, Phys. Rev. B 86, 115412 (2012)

    Article  ADS  Google Scholar 

  12. X. Zhai, G. Jin, Phys. Rev. B 89, 085430 (2014)

    Article  ADS  Google Scholar 

  13. D.K. Efetov, L. Wang, C. Handschin, K.B. Efetov, J. Shuang, R. Cava, T. Taniguchi, K. Watanabe, J. Hone, C.R. Dean, P. Kim, Nat. Phys. 12, 328 (2015)

    Article  Google Scholar 

  14. M.R. Sahu, P. Raychaudhuri, A. Das, Phys. Rev. B 94, 235451 (2016)

    Article  ADS  Google Scholar 

  15. A. Soori, M.R. Sahu, A. Das, S. Mukerjee, Phys. Rev. B 98, 075301 (2018)

    Article  ADS  Google Scholar 

  16. P. Pandey, R. Kraft, R. Krupke, D. Beckmann, R. Danneau, Phys. Rev. B 100, 165416 (2019)

    Article  ADS  Google Scholar 

  17. C. Wang, L. Zhang, P. Zhang, J. Song, Y.-X. Li, Phys. Rev. B 101, 045407 (2020)

    Article  ADS  Google Scholar 

  18. J. Linder, T. Yokoyama, Phys. Rev. B 89, 020504(R) (2014)

    Article  ADS  Google Scholar 

  19. L. Majidi, H. Rostami, R. Asgari, Phys. Rev. B 89, 045413 (2014)

    Article  ADS  Google Scholar 

  20. J. Linder, T. Yokoyama, Phys. Rev. B 95, 144515 (2017)

    Article  ADS  Google Scholar 

  21. B. Lv, C. Zhang, Z. Ma, Phys. Rev. Lett. 108, 077002 (2012)

    Article  ADS  Google Scholar 

  22. X. Zhou, Phys. Rev. B 102, 045132 (2020)

    Article  ADS  Google Scholar 

  23. Y. Xu, X. Zhou, Results Phys. 27, 104523 (2021)

    Article  Google Scholar 

  24. R. Cheng, X. Zhou, EPL 130, 17004 (2020)

    Article  ADS  Google Scholar 

  25. S.-I. Chu, D.A. Telnov, Phys. Rep. 390, 1 (2004)

    Article  MathSciNet  ADS  Google Scholar 

  26. S. Morina, O.V. Kibis, A.A. Pervishko, I.A. Shelykh, Phys. Rev. B 91, 155312 (2015)

  27. A. Iurov, L. Zhemchuzhna, P. Fekete, G. Gumbs, D. Huang, Phys. Rev. Res. 2, 043245 (2020)

  28. A.H.C. Neto, F. Guinea, N.M.R. Peres, K.S. Novoselov, A.K. Geim, Rev. Mod. Phys. 81, 109 (2009)

    Article  ADS  Google Scholar 

  29. S.-H. Zhang, W. Yang, Phys. Rev. B 97, 235440 (2018)

    Article  ADS  Google Scholar 

  30. X. Zhou, Phys. Rev. B 100, 195139 (2019)

    Article  ADS  Google Scholar 

Download references

Acknowledgement

This work was supported by the jit-b (Grant No. 201831).

Author information

Authors and Affiliations

Authors

Contributions

RC: numerical calculations, and reviewing. XZ: derivation of equations, writing, and reviewing.

Corresponding author

Correspondence to Xingfei Zhou.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cheng, R., Zhou, X. Light-modulated anomalous Andreev reflection in a graphene-based superconducting junction. Eur. Phys. J. B 95, 126 (2022). https://doi.org/10.1140/epjb/s10051-022-00387-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjb/s10051-022-00387-w

Navigation