Skip to main content
Log in

Optimization of Modified Empirical Model in 2.3 GHz Long Term Evolution Network. Case Study of FUTO

  • Published:
Radioelectronics and Communications Systems Aims and scope Submit manuscript

Abstract

Path Loss (PL) is a factor that contributes to signal impairment in a wireless channel and can be predicted using empirical models such as Okumura-Hata, Egli, COST, and ECC-33. These models are known to be inaccurate when used in areas different from where they are meant for. In this paper an empirical model suitable for PL prediction in 4G Long Term Evolution (LTE) network was modified and optimized. Measured PL values were obtained and compared with the existing models in order to obtain the closest model to the measured data. The Okumura-Hata model as the closest to the measured values was modified using the loss exponent obtained for FUTO terrain and optimized for better performance using the developed autoregressive (AR) model. The measured data, the existing, modified and optimized AR [opt(ARm)] models were simulated using the MATLAB software. The performances of the existing and opt(ARm) models were evaluated using the root mean square error (RMSE). The results obtained show that the proposed opt(ARm) model is the best as compared to the existing models due to its lowest RMSE value, and thus it can be used to estimate PL for mobile radio signal in FUTO (Federal University of Technology, Owerri), Nigeria.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.

Similar content being viewed by others

References

  1. A. L. Imoize, T. E. Ogunfuwa, "Propagation measurements of a 4G LTE network in Lagoon environment," Niger. J. Technol. Dev., v.16, n.1, p.1 (2019). DOI: https://doi.org/10.4314/njtd.v16i1.1.

    Article  Google Scholar 

  2. T. S. Rappaport, Wireless Comunications - Principles and Practice (Prentice Hall, New Jersey, 2002).

    Google Scholar 

  3. M. R. Alexander, "Understanding and predicting urban propagation losses," Naval Postgraduate School (2009).

  4. M. Hata, "Empirical formula for propagation loss in land mobile radio services," IEEE Trans. Veh. Technol., v.29, n.3, p.317 (1980). DOI: https://doi.org/10.1109/T-VT.1980.23859.

    Article  MathSciNet  Google Scholar 

  5. A. Ekeocha, N. Onyebuchi, L. Uzoechi, G. Ononiwu, "Optimization of cost 231 model for 3G wireless communication signal in suburban area of Port Harcourt, Nigeria," Int. J. Eng. Sci. Res. Technol., v.5, n.5, p.83 (2016). DOI: https://doi.org/10.5281/zenodo.50980.

    Article  Google Scholar 

  6. C. Cox, An Introduction to LTE (Wiley, Chichester, UK, 2014).

    Book  Google Scholar 

  7. D. S. Nyitamen, M. Ahmed, T. A. Danladi, "Path loss propagation model prediction for GSM mobile network planning in Kaduna Town," Int. J. Eng. Sci. Res. Technol., v.4, n.4, p.345 (2015). URI: https://www.academia.edu/12380445/PATH_LOSS_PROPAGATION_MODEL_PREDICTION_FOR_GSM_MOBILE_NETWORK_PLANNING_IN_KADUNA_TOWN.

    Google Scholar 

  8. K. M. Aied, A. J. Ahmed, "Performance evaluation of path loss in mobile channel for Karada District in Baghdad City," Eng. Technol. J., v.30, n.17, p.3023 (2012). URI: https://www.iasj.net/iasj/article/66070.

    Google Scholar 

  9. V. S. Abhayawardhana, I. J. Wassell, D. Crosby, M. P. Sellars, M. G. Brown, "Comparison of empirical propagation path loss models for fixed wireless access systems," in IEEE 61st Vehicular Technology Conference (IEEE, 2005).

    Google Scholar 

  10. C. I. Abiodun, J. S. Ojo, "Determination of probability distribution function for modelling path loss for wireless channels applications over micro-cellular environments of Ondo State, Southwestern Nigeria," World Sci. News, v.118, p.74 (2019). URI: https://bibliotekanauki.pl/articles/1075736.

    Google Scholar 

  11. J. O. Eichie, O. D. Oyedum, M. O. Ajewole, A. M. Aibinu, "Comparative analysis of basic models and artificial neural network based model for path loss prediction," Prog. Electromagn. Res. M, v.61, p.133 (2017). DOI: https://doi.org/10.2528/PIERM17060601.

    Article  Google Scholar 

  12. S. A. Mawjoud, "Comparison of propagation model accuracy for long term evolution (LTE) cellular network," Int. J. Comput. Appl., v.79, n.11, p.41 (2013). DOI: https://doi.org/10.5120/13789-1931.

    Article  Google Scholar 

  13. E. T. Tchao, J. D. Gadze, J. Obeng, "Performance evaluation of a deployed 4G LTE network," Int. J. Adv. Comput. Sci. Appl., v.9, n.3 (2018). DOI: https://doi.org/10.14569/IJACSA.2018.090325.

    Article  Google Scholar 

  14. A. Obot, O. Simeon, J. Afolayan, "Comparative analysis of path loss prediction models for urban macrocellular environments," Niger. J. Technol., v.30, n.3, p.50 (2011). URI: https://www.ajol.info/index.php/njt/article/view/123543.

    Google Scholar 

  15. A. A. Nwaokoro, N. Chukwuchekwa, K. C. Emerole, "Evaluation of the strength of signal received by a GSM network (MTN) in Owerri Metropolis using drive test," Int. J. Eng. Technol., v.6, n.1, p.17 (2016). URI: https://www.researchgate.net/publication/322293853_Evaluation_of_the_Strength_of_Signal_Received_By_A_GSM_Network_MTN_In_Owerri_Metropolis_Using_Drive_Test.

    Google Scholar 

  16. A. N. Jadhav, S. S. Kale, "Suburban area path loss propagation prediction and optimization using Hata model at 2375 MHz," Int. J. Adv. Res. Comput. Commun. Eng., v.3, n.1, p.5004 (2014). URI: https://www.ijarcce.com/upload/2014/january/IJARCCE3F__s_sachin_Suburban.pdf.

    Google Scholar 

  17. P. Kumar, B. Patil, S. Ram, "Selection of radio propagation model for long term evolution (LTE) network," Int. J. Eng. Res. Gen. Sci., v.3, n.1, p.373 (2015). URI: http://pnrsolution.org/Datacenter/Vol3/Issue1/48.pdf.

    Google Scholar 

  18. G. A. Abed, M. Ismail, K. Jumari, "Modeling and performance evaluation of LTE networks with different TCP variants," Int. Sch. Sci. Res. Innov., v.5, n.3, p.443 (2011). URI: https://www.researchgate.net/publication/292056029_Modeling_and_performance_evaluation_of_LTE_networks_with_different_TCP_variants.

    Google Scholar 

  19. J. Isabona, C. Konyeha, "Experimental study of UMTS radio signal propagation characteristics by field measurement," Am. J. Eng. Res., v.2, n.7, p.99 (2013). URI: https://www.researchgate.net/publication/275350751_Experimental_Study_of_Umts_Radio_Signal_Propagation_Characteristics_by_Field_Measurement.

    Google Scholar 

  20. N. S. Nkordeh, A. A. Atayero, F. E. Idachaba, O. O. Oni, "LTE network planning using the Hata-Okumura and the COST-231 Hata pathloss models," in Proceedings of the World Congress on Engineering (WCE, London, 2014). URI: https://www.researchgate.net/publication/277015846_LTE_Network_Planning_using_the_Hata-Okumura_and_the_COST-231_Hata_Pathloss_Models.

    Google Scholar 

  21. B. O. Omijeh, I. C. Nnaemeka, "Determination of a path loss model for long term evolution (LTE) in FESTAC town Lagos," Int. J. Sci. Eng. Res., v.9, n.2, p.776 (2018). URI: https://www.ijser.org/researchpaper/DETERMINATION-OF-A-PATHLOSS-MODEL-FOR-LONG-TERM-EVOLUTION-LTE-IN-FESTAC-TOWN-LAGOS.pdf.

    Google Scholar 

  22. N. Shabbir, H. Kashif, "Radio resource management in WiMAX," Blekinge Institute of Technology (2009).

  23. J. Milanovic, S. Rimac-Drlje, K. Bejuk, "Comparison of propagation models accuracy for WiMAX on 3.5 GHz," in 2007 14th IEEE International Conference on Electronics, Circuits and Systems (IEEE, 2007). DOI: https://doi.org/10.1109/ICECS.2007.4510943.

    Chapter  Google Scholar 

  24. J. Walfisch, H. L. Bertoni, "A theoretical model of UHF propagation in urban environments," IEEE Trans. Antennas Propag., v.36, n.12, p.1788 (1988). DOI: https://doi.org/10.1109/8.14401.

    Article  Google Scholar 

  25. J. Isabona, S. Azi, "Optimised Walfisch-Bertoni model for pathloss prediction in urban propagation environment," Int. J. Eng. Innov. Technol., v.2, n.5, p.14 (2012).

    Google Scholar 

  26. A. A. Nwaokoro, C. Nkwachukwu, O. C. Nosiri, "Signal strength evaluation of a 3G network in Owerri metropolis using path loss propagation model at 2.1GHz," IOSR J. Electron. Commun. Eng., v.11, n.6, p.44 (2016). DOI: https://doi.org/10.9790/2834-1106044453.

    Article  Google Scholar 

  27. A. Ekeocha, O. Nosiri, L. O. Uzoechi, "Path loss characterization of 3G wireless signal for urban and suburban environments in Port Harcourt City, Nigeria," Int. Res. J. Eng. Technol., v.3, n.3, p.16 (2016).

    Google Scholar 

  28. W. C. Y. Lee, "Estimate of local average power of a mobile radio signal," IEEE Trans. Veh. Technol., v.34, n.1, p.22 (1985). DOI: https://doi.org/10.1109/T-VT.1985.24030.

    Article  Google Scholar 

  29. Z. K. Adeyemo, A. O. Akande, A. O. Fawole, "Investigation of some existing prediction models and development of a modified model for UMTS signal in Owerri, Nigeria," Int. J. Commun. Antenna Propag., v.7, n.4, p.290 (2017). DOI: https://doi.org/10.15866/irecap.v7i4.10057.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Folasade Abiola Semire.

Ethics declarations

ADDITIONAL INFORMATION

A. O. Akande, F. A. Semire, Z. K. Adeyemo, C. K. Agubor

The authors declare that they have no conflicts of interest.

This article does not contain any studies with human participants or animals performed by any of the authors.

The initial version of this paper in Russian is published in the journal “Izvestiya Vysshikh Uchebnykh Zavedenii. Radioelektronika,” ISSN 2307-6011 (Online), ISSN 0021-3470 (Print) on the link http://radio.kpi.ua/article/view/S0021347022010046 with DOI: https://doi.org/10.20535/S0021347022010046

Additional information

Translated from Izvestiya Vysshikh Uchebnykh Zavedenii. Radioelektronika, No. 1, pp. 33-54, January, 2022 https://doi.org/10.20535/S0021347022010046 .

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Akande, A.O., Semire, F.A., Adeyemo, Z.K. et al. Optimization of Modified Empirical Model in 2.3 GHz Long Term Evolution Network. Case Study of FUTO. Radioelectron.Commun.Syst. 65, 27–47 (2022). https://doi.org/10.3103/S0735272722010046

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S0735272722010046

Navigation