Skip to main content
Log in

Refinement Mechanism of Primary Carbides in H13 Die Steel Solidified in Super-Gravity Field

  • Original Research Article
  • Published:
Metallurgical and Materials Transactions B Aims and scope Submit manuscript

Abstract

In this study, the super-gravity field was used to refine primary carbides in H13 die steel. In the range of super-gravity coefficient of 40 to 140, the influences of super-gravity coefficient on the particle size distribution of primary carbides and the interdendritic element segregation were investigated. The formation time and the maximum generation radius of primary carbides were calculated, and the detailed mechanism of refining primary carbides was discussed. The experimental results show that an increase in the super-gravity coefficient is beneficial to reduce the size and quantity of primary carbides. When the super-gravity coefficient increases from 40 to 140, the quantity of primary carbides in the H13 samples solidified in super-gravity field decreases by 44 pct, and the size of the primary carbides decreases by 15.49 pct. The reason is that increasing the super-gravity coefficient can reduce the degree of interdendrite segregation of elements, and delay the growth time of primary carbides. Compared with VC, the growth time of Mo2C is more easily affected by the super-gravity coefficient. When the super-gravity coefficient increases from 40 to 140, the solid fraction at which Mo2C begins to form increases from 0.956 to 0.989.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. J. Zhu, Z.H. Zhang, and J.X. Xie: Mater. Sci. Eng. A, 2019, vol. 752, pp. 101–14.

    Article  CAS  Google Scholar 

  2. C. Meng, H. Zhou, H.F. Zhang, X. Tong, D.L. Cong, C.W. Wang, and L.Q. Ren: Mater. Des., 2013, vol. 51, pp. 886–93.

    Article  CAS  Google Scholar 

  3. X.L. Sun, H.J. Guo, X.C. Chen, A.G. Ning, G.W. Du, and C.B. Shi: Iron Steel, 2014, vol. 49, pp. 68–73. (In Chinese).

    CAS  Google Scholar 

  4. K. Ozaki: Denki Seiko, 2005, vol. 76, pp. 249–57.

    Article  CAS  Google Scholar 

  5. L.L. Mishnaevsky, N. Lippmann, and S. Schmauder: Z. Metallkd., 2003, vol. 94, pp. 676–81.

    Article  CAS  Google Scholar 

  6. J. Lan, J.J. He, W.J. Ding, Q.D. Wang, Y.P. Zhu, C.Q. Zhai, X.P. Xu, and C. Lu: Iron Steel, 2000, vol. 35, pp. 48–66. (In Chinese).

    CAS  Google Scholar 

  7. J. Lan, J.J. He, W.J. Ding, and Q.D. Wang: ISIJ Int., 2000, vol. 40, pp. 1275–82.

    Article  CAS  Google Scholar 

  8. Y. Huang, Y. Xie, G.G. Cheng, L. Chen, Y.D. Zhang, and Q.Z. Yan: J. Chin. Soc. Rare Earths, 2017, vol. 35, pp. 782–89. (In Chinese).

    Google Scholar 

  9. D. Wei: Effect of Ce on Microstructure and Mechanical Properties of H13 Steel, Inner Mongolia University of Technology, Huhehaote, 2015. (In Chinese).

    Google Scholar 

  10. Y.K. Pei, D.S. Ma, B.S. Liu, Z.Z. Chen, R. Zhou, and J. Zhou: Iron Steel, 2012, vol. 47, pp. 81–86. (In Chinese).

    CAS  Google Scholar 

  11. Z.Z. Chen and D. Lan: Die Steel Manual, Metallurgical Industry Press, Beijing, 2002. (In Chinese).

    Google Scholar 

  12. M.T. Mao, H.J. Guo, X.L. Sun, F. Wang, X.C. Chen, and J. Guo: Chin. J. Eng., 2017, vol. 39, pp. 1174–81. (In Chinese).

    CAS  Google Scholar 

  13. S.N. Tewari: Metall. Mater. Trans. A, 1986, vol. 17A, pp. 2279–90.

    Article  CAS  Google Scholar 

  14. B.S. Terry and O.S. Chinyamakobvu: J. Mater. Sci., 1992, vol. 27, pp. 5666–70.

    Article  CAS  Google Scholar 

  15. D.S. Ma, J. Zhou, Z.K. Zhang, H.X. Chi, and Z.Z. Chen: Iron Steel, 2010, vol. 45, pp. 80–84. (In Chinese).

    CAS  Google Scholar 

  16. M.T. Mao, H.J. Guo, F. Wang, and X.L. Sun: ISIJ Int., 2019, vol. 59, pp. 848–57.

    Article  CAS  Google Scholar 

  17. W.M. Mao, Z.S. Zhen, and H.T. Chen: Spec. Cast. Nonferrous Alloys, 2005, vol. 25, pp. 538–40. (In Chinese).

    Google Scholar 

  18. H. Zhang: Study on the fabrication and the solidification behavior of SiCp/Al-Mg composites prepared by mechanical stirring [D]. Harbin: Harbin Institute of Technology, 2011. (In Chinese)

  19. J. Yurko, R. Martinez, and M. Flemings: Metall. Sci. Technol., 2003, vol. 21, pp. 10–15.

    CAS  Google Scholar 

  20. H.C. Zhu, H.B. Li, Z.Y. He, H. Feng, Z.H. Jiang, and T. He: ISIJ Int., 2021, vol. 61, pp. 1889–98.

    Article  CAS  Google Scholar 

  21. J. Li, Z.C. Guo, and J.T. Gao: ISIJ Int., 2014, vol. 54, pp. 743–49.

    Article  CAS  Google Scholar 

  22. X.C. Wen, L. Guo, Q.P. Bao, and Z.C. Guo: J. Alloys Compd., 2020, vol. 832, pp. 154995–155007.

    Article  CAS  Google Scholar 

  23. Y. Li, J.T. Gao, Z.L. Huang, and Z.C. Guo: Ceram. Int., 2019, vol. 45, pp. 10961–68.

    Article  CAS  Google Scholar 

  24. C. Li, J.T. Gao, Z. Wang, and H.R. Ren: ISIJ Int., 2017, vol. 57, pp. 767–69.

    Article  CAS  Google Scholar 

  25. Y. Lu, J.T. Gao, F. Wang, and Z.C. Guo: Metall. Mater. Trans. B, 2017, vol. 48B, pp. 749–53.

    Article  Google Scholar 

  26. X. Lan, J.T. Gao, Z.L. Huang, and Z.C. Guo: Metall. Mater. Trans. B, 2018, vol. 49B, pp. 1165–73.

    Article  Google Scholar 

  27. G.Y. Song, B. Song, Y.H. Yang, Z.B. Yang, and W.B. Xin: Metall. Mater. Trans. B, 2015, vol. 46, pp. 2190–97.

    Article  CAS  Google Scholar 

  28. L. Guo, X.C. Wen, Q.P. Bao, and Z.C. Guo: Metals, 2018, vol. 8, pp. 701–13.

    Article  Google Scholar 

  29. Y.H. Yang, B. Song, Z.B. Yang, G.Y. Song, Z.Y. Cai, and Z.C. Guo: Materials, 2016, vol. 9, pp. 1001–14.

    Article  Google Scholar 

  30. L.X. Zhao, Z.C. Guo, Z. Wang, and M.Y. Wang: Metall. Mater. Trans. A, 2010, vol. 41A, pp. 670–75.

    Article  CAS  Google Scholar 

  31. Y.N. Wang: J. Iron Steel Res. Int., 2017, vol. 29, pp. 982–89.

    CAS  Google Scholar 

  32. J. Chen: Data Manual of Common Charts in Steelmaking, Metallurgical Industry Press, Beijing, 1984. (In Chinese).

    Google Scholar 

  33. M.T. Mao: Study on Primary Carbides in H13 Steel and Its Control Method, Beijing University of science and technology, Beijing, 2019. (In Chinese).

    Google Scholar 

Download references

Acknowledgments

This work was financially supported by China Postdoctoral Fund (Grant No. 2021M700394) and Key R&D Plan of Shandong Province in 2021 (Grant No. 2021CXGC010209). The authors thank the Beijing Key Laboratory of Special Melting and Preparation of High-end Metal Materials for its support.

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hanjie Guo.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, S., Xi, X., Qin, S. et al. Refinement Mechanism of Primary Carbides in H13 Die Steel Solidified in Super-Gravity Field. Metall Mater Trans B 53, 3184–3196 (2022). https://doi.org/10.1007/s11663-022-02597-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11663-022-02597-0

Navigation