Skip to main content
Log in

Effect of G-Phase on the Fracture Behavior of a Welded Joint from Refractory Alloy HP40NbTi

  • WELDED JOINTS
  • Published:
Metal Science and Heat Treatment Aims and scope

The microstructure, the phase composition and the mechanical properties at 20°C and 870°C of a tubular welded joint from alloy HP40NbTi based on the Fe – 25% Cr – 35% Ni system are determined. The mechanism of fracture of the joint under short-term and long-term loading is studied. The role of the G-phase in nucleation and propagation of cracks in the structure of the alloy is revealed. An intermetallic G-phase is shown to form in the heat-affected zone under welding. It is shown that the G-phase lowers the long-term strength of the welded joint of alloy HP40NbTi as compared to the matrix metal.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.
Fig. 11.

Similar content being viewed by others

References

  1. B. Hu, X. Chen, C. Lian, and T. Chen, “Study on microstructure and properties of centrifugal casting 35Cr45NiNb + MA furnace tubes during service,” Mater. High Temp., 36(6), 489 – 498 (2019).

    Article  Google Scholar 

  2. A. Ghatak and P. S. Robi, “High-temperature properties and creep life assessment of 25Cr35NiNb micro-alloyed steel,” J. Mater. Eng. Perform., 25(5), 2000 – 2007 (2016).

    Article  CAS  Google Scholar 

  3. M. Garbiak, W. Jasinski, and B. Piekarski, “Materials for reformer furnace tubes. History of evolution,” Arch. Foundry Eng., 11(2), 47 – 52 (2011).

    CAS  Google Scholar 

  4. A. I. Rudskoy, A. S. Oryshchenko, S. Yu. Kondrat’ev, et al., “Special features of structure and long-term strength of cast refractory alloy 45Kh26N33S2B2,” Met. Sci. Heat Treat., 55(3–4), 209 – 215 (2013).

    Article  CAS  Google Scholar 

  5. S. Borjali, S. B. Sllahkaram, and H. Khosravi, “Effects of working temperature and carbon diffusion on the microstructure of high pressure heat-resistant stainless steel tubes used in pyrolysis furnaces during service condition,” Mater. Des., 34, 65 – 73 (2012).

    Article  CAS  Google Scholar 

  6. S. V. Kondrat’ev, G. P. Anastasiadi, A. V. Ptashik, and S. N. Petrov, “Kinetics of the high-temperature oxidation of heat-resistant statically and centrifugally cast HP40NbTi alloys,” Oxid. Met., 91(1–2), 33 – 53 (2019).

    Article  CAS  Google Scholar 

  7. S. V. Kondrat’ev, G. P. Anastasiadi, A. V. Ptashik, and S. N. Petrov, “Evolution of the microstructure and phase composition of a subsurface of cast HP-type alloy during a long-term high-temperature aging,” Mater. Charact., 150, 166 – 173 (2019).

    Article  CAS  Google Scholar 

  8. S. V. Kondrat’ev, G. P. Anastasiadi, A. V. Ptashik, and S. N. Petrov, “The mechanisms of scale and subsurface diffusion zone formation of heat-resistant HP40NbTi alloy at long-term high-temperature exposure,” Materialia, 7, 100427 (2019).

    Article  CAS  Google Scholar 

  9. G. P. Anastasiadi, S. Yu. Kondrat’ev, and A. I. Rudskoy, “Selective high-temperature oxidation of phases in a cast refractory alloy of the 25Cr – 35Ni – Si – Nb – C system,” Met. Sci. Heat Treat., 56(7–8), 403 – 408 (2014).

    Article  CAS  Google Scholar 

  10. S. Yu. Kondrat’ev, G. P. Anastasiadi, and A. I. Rudskoy, “Nanostructure mechanism of formation of oxide film in heat-resistant Fe – 25Cr – 35Ni superalloys,” Met. Sci. Heat Treat., 56(9–10), 531 – 536 (2015).

    Article  CAS  Google Scholar 

  11. C. Singhatham and K. Eidhed, “The study of welding repair parameters of tube 35Cr – 45Ni – Nb alloy of the ethylene heating furnace,” Appl. Mech. Mater., 848, 35 – 38 (2016).

    Article  Google Scholar 

  12. A. Reihani and R. D. Haghighi, “Failure analysis and weld ability improvement of 35% Cr – 45% Ni heat resistant alloy,” Eng. Failure Anal., 52, 97 – 108 (2015)

    Article  CAS  Google Scholar 

  13. M. Abbasi, I. Park, Y. Ro, et al., “Microstructural evolution of welded fresh-to-aged reformer tubes used in hydrogen production plants,” Eng. Failure Anal., 92, 368 – 377 (2018).

    Article  CAS  Google Scholar 

  14. J. Guo, T. Cao, C. Cheng, et al., “Microstructure evolution and mechanical properties degradation of HPNb alloy after a five-year service,” Mater. Sci. Express., 5(4), 046509 (2018).

    Article  CAS  Google Scholar 

  15. E. A. Kenik, P. J. Maziasz, R. W. Swindeman, et al., “Structure and phase stability in cast modified-HP austenite after long-term ageing,” Scr. Mater., 49(2), 117 – 122 (2003).

    Article  CAS  Google Scholar 

  16. A. I. Rudskoy, S. Yu. Kondrat’ev, G. P. Anastasiadi, et al., “Transformation of the structure of refractory alloy 0.45C – 26Cr – 33Ni – 2Si – 2Nb during long-term high-temperature hold,” Met. Sci. heat Treat., 55(9–10), 517 – 525 (2014).

    Article  CAS  Google Scholar 

  17. A. I. Rudskoy, G. P. Anastasiadi, S. Yu. Kondrat’ev, et al., “Effect of electron factor (number of electron holes) on kinetics of nucleation, growth, and dissolution of phases during long-term high-temperature holdings of 0.45C – 26Cr – 33Ni – 2Si – 2Nb superalloy,” Phys. Met. Metallogr., 115(1), 1 – 11 (2014).

    Article  Google Scholar 

  18. A. Alvino, D. Ramires, A. Tonti, and D. Lega, “Influence of chemical composition on microstructure and phase evolution of two HP heat resistant steels after long-term plant-service aging,” Mater. High Temp., 31(1), 2 – 11 (2014).

    Article  CAS  Google Scholar 

  19. A. L. Talis, V. S. Kraposhin, S. Yu. Kondrat’ev, et al., “Non-crystallographic symmetry of liquid metal, flat crystallographic faults and polymorph transformation of the M7C3 carbide,” Acta Crystallogr. A, 73, 209 – 217 (2017).

    Article  CAS  Google Scholar 

  20. L. Bonaccorsi, E. Guglielmino, R. Pino, et al., “Damage analysis in Fe – Cr – Ni centrifugally cast alloy tubes for reforming furnaces,” Eng. Failure Anal., 36, 65 – 74 (2014).

    Article  CAS  Google Scholar 

  21. C. J. Liu and Y. Chen, “Variations of the microstructure and mechanical properties of HP40Nb hydrogen reformer tube with time at elevated temperature,” Mater. Des., 32(4), 2507 – 2512 (2011).

    Article  CAS  Google Scholar 

  22. L. S. Monobe and C. G. Scho*n, “Microstructural and fractographic investigation of a centrifugally cast 20Cr32Ni + Nb alloy tube in the ‘as-cast’ and aged states,” J. Mater. Technol., 2(2), 195 – 251 (2013).

  23. S. R. Allahkaram, S. Borjiali, and H. Khosravi, “Investigation of weldability and property changes of high pressure heat-resistant cast stainless tubes used in pyrolysis furnaces after a five-year service,” Mater. Des., 33, 476 – 484 (2012).

    Article  CAS  Google Scholar 

  24. E. Guglielmino, R. Pino, C. Servetto, and A. Sili, “Damage investigation on welded tubes of a reforming furnace,” La Metallurgia Italiana, 107(1), 53 – 58 (2015).

    Google Scholar 

  25. A. Reihani, S. A. Rizavi, E. Abbasi, et al., “Failure analysis of welded radiant tubes made of cast heat-resisting steel,” J. Fail. Anal. Prevent., 13(6), 658 – 665 (2013).

    Article  Google Scholar 

  26. J. Guo,W. Liu, C. Li, and X. Zhang, “Microstructural characterization and mechanical behavior of Cr25Ni35NbM alloy dissimilar weld joint for application in a hydrogen reformer furnace,” Metal. Res. Technol., 117(6), 612 (2020).

    Article  CAS  Google Scholar 

  27. M. Attarian, A. K. Taheri, S. Jalilvand, et al., “Microstructural and failure analysis of welded primary reformer furnace tube made of HP-Nb micro alloyed heat resistant steel,” Eng. Failure Anal., 68, 32 – 51 (2016).

    Article  CAS  Google Scholar 

  28. L. H. de Almeida, A. F. Ribeiro, and I. Le May, “Microstructural characterization of modified 25Cr – 35Ni centrifugally cast steel furnace tubes,” Mater. Charact., 49(3), 219 – 229 (2003).

    Article  CAS  Google Scholar 

  29. A. Alvino, D. Lega, F. Giacobbe, et al., “Damage characterization in two reformer heater tubes after nearly 10 years of service at different operative and maintenance conditions,” Eng. Failure Anal., 17(7 – 8), 1526 – 1541 (2010).

  30. A. F. Ribeiro, R. M. T. Borges, and L. H. de Almeida, “Phase transformation in heat resistant steels observed by SEM (NbTi)C – NiNbSi (G-Phase), Acta Microsc., 11(1), 59 – 63 (2002).

    Google Scholar 

  31. S. Yu. Kondrat’ev, G. P. Anastasiadi, S. N. Petrov, and A. V. Ptashnik, “Kinetics of the formation of intermetallic phases in HP-type heat-resistant alloys at long-term high-temperature exposure,” Metall. Mater. Trans. A, 48(1), 482 – 492 (2017).

    Article  CAS  Google Scholar 

  32. A. I. Rudskoy, A. S. Oryshchenko, S. Yu. Kondrat’ev, et al., “Mechanisms and kinetics of phase transformations in refractory alloy 45Kh26N33S2B2 in long-term high-temperature holds. Part 1,” Met. Sci. Heat Treat., 56(1–2), 3 – 8 (2014).

    Article  CAS  Google Scholar 

  33. A. I. Rudskoy, S. Yu. Kondrat’ev, G. P. Anastasiadi, et al., “Mechanism and kinetics of phase transformations in refractory alloy 45Kh26N33S2B2 in long-term high-temperature holds. Part 2,” Met. Sci. Heat Treat., 56(3–4), 124 – 130 (2014).

    Article  CAS  Google Scholar 

  34. S. Yu. Kondrat’ev, A. V. Ptrashnik G. P. Anastasiadi, and S. N. Petrov, “Analysis of transformations of carbide phases in alloy 25Cr35Ni by the method of quantitative electron microscopy,” Met. Sci. Heat Treat., 57(7–8), 402 – 409 (2015).

    Article  CAS  Google Scholar 

  35. S. Yu. Kondrat’ev, G. P. Anastasiadi, S. N. Petrov, et al., “Morphological characteristics of chromium carbides in HP40NbTi refractory alloys in cast condition and after high-temperature holds,” Met. Sci. Heat Treat., 58(1 – 2), 19 – 26 (2016).

  36. S. Yu. Kondrat’ev, M. D. Fuks, M. A. Frolov, and S. N. Petrov, “Analysis of structure, phase composition and mechanical properties of a tubular welded joint from refractory alloy HP40NbTi,” Metalloved. Term. Obrab. Met., No. 11(785), 21 – 31 (2020).

  37. Y. Chen, X. Dai, X. Chen, and B. Yang, “The characterization of G-phase in Fe20Cr9Ni cast duplex stainless steel,” Mater. Charact., 149, 74 – 81 (2019).

    Article  CAS  Google Scholar 

  38. A. F. Ribeiro, R. M. T. Borges, and L. H. de Almeida, “Phase transformation in heat resistant steels observed by STEM (NbTi)C – NiNbSi (G-phase),” Acta Microsc., 11(1), 9 – 63 (2002).

    Google Scholar 

  39. R. C. Ecob, R. C. Lobb, and V. L. Kohler, “The formation of G-phase in 20_25 Nb stainless steel AGR fuel cladding alloy and its effect on creep properties,” J. Mater. Sci., 22(8), 2867 – 2880 (1987).

    Article  CAS  Google Scholar 

  40. M. Abbasi, I. Park, Y. Ro, R. Ayer, and J.-H. Shim, “G-phase formation in twenty-years aged heat-resistant cast austenitic steel reformer tube,” Mater. Charact., 148, 297 – 306 (2019).

    Article  CAS  Google Scholar 

  41. R. A. P. Ibañez, G. D. de Almeida Soares, L. H. de Almeida, and I. Le May, “Effects of Si content on the microstructure of modified-HP austenitic steels,” Mater. Charact., 30(4), 243 – 249 (1993).

    Article  Google Scholar 

  42. F. C. Nunez, L. H. de Almeida, J. Dille, et al., “Microstructural changes caused by yttrium addition to Nb-modified centrifugally cast HP-type stainless steel,” Mater. Charact., 58, 132 – 142 (2007).

    Article  CAS  Google Scholar 

  43. S. Shi and J. C. Lippold, “Microstructure evolution during service exposure of two cast, heat-resisting stainless steels —HP-Nb modified and 20–32Nb,” Mater. Charact., 59, 1029 – 1040 (2008).

    Article  CAS  Google Scholar 

  44. J. Guo, X. Zhang, C. Li, et al., “Effects of Wand Ce micro addition in filler metal on microstructure and creep strength of Cr35Ni45NbM alloy weld joint,” Mater. Today Commun., 28, 102600 (2021).

    Article  CAS  Google Scholar 

  45. S. Kargarnejad and V. Abbasi-Chianeh, “Failure analysis of a burner ring made of 20Cr32NiNb alloy in gas turbine combustion chamber,” Case Studies Eng. Failure Anal., 2(2), 138 – 143 (2014).

    Article  Google Scholar 

  46. J. Yan, Y. Gu, Y. Dang, et al., “Effect of carbon on the microstructure evolution and mechanical properties of low Si-containing centrifugal casting 20Cr32NiNb alloy,” Mater. Chem. Phys., 175, 107 – 117 (2016).

    Article  CAS  Google Scholar 

  47. N. Vaché, P. Steyer, C. Duret-Thual, et al., “Microstructural study of the NbC to G-phase transformation in HP-Nb alloys,” Materialia, 9, 100593 (2020

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. N. Petrov.

Additional information

Translated from Metallovedenie i Termicheskaya Obrabotka Metallov, No. 1, pp. 33 – 43, January, 2022.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kondrat’ev, S.Y., Belikova, Y.A., Fuks, M.D. et al. Effect of G-Phase on the Fracture Behavior of a Welded Joint from Refractory Alloy HP40NbTi. Met Sci Heat Treat 64, 34–44 (2022). https://doi.org/10.1007/s11041-022-00759-0

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11041-022-00759-0

Key words

Navigation