Skip to main content
Log in

Crystallographic Laws of Formation of Recrystallization Texture in a Copper Capillary Tube

  • HEAT AND THERMOMECHANICAL TREATMENT
  • Published:
Metal Science and Heat Treatment Aims and scope

Special features of deformation and recrystallization textures in a copper capillary tube produced by drawing and subjected to annealing in a vacuum furnace at 500°C for 5.5 h are studied. The textures of the specimens are analyzed by the EBSD technique. It is shown that both textures are homogeneous over the entire cross section of the tube and match on the whole the deformation and recrystallization textures of cold-rolled copper sheets. Grains with orientations located at the scattering edges of the deformation texture grow under the recrystallization and deviate from the accurate deformation orientations by turning about their axes by 50 – 70° going close to <110>. A hypothesis explaining the recrystallization texture by formation of nuclei in the regions of deformation twins is suggested.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

References

  1. A. N. Bramley and D. J. Smith, “Tube drawing with a floating plug,” Met. Technol., 3, 322 – 331 (1976) (https://doi.org/10.1179/030716976803392277).

    Article  Google Scholar 

  2. K. Sawamiphakdi, G. D. Lahoti, and P. K. Kropp, “Simulation of a tube drawing process by the fine element method,” J. Mater. Proc. Technol., 27, 179 – 190 (1991) (https://doi.org/10.1016/0924-0136(91)90052-G).

    Article  Google Scholar 

  3. K.-K. Um and D. N. Lee, “An upper bound solution of tube drawing,” J. Mater. Proc. Technol., 63, 43 – 48 (1997) (https://doi.org/10.1016/S0924-0136(96)02597-6).

    Article  Google Scholar 

  4. Kwan Chi-Tarn, “A generalized velocity field for axisymmetric tube drawing through an arbitrary curved die with an arbitrarily curved plug,” J. Mater. Proc. Technol., 122, 213 – 219 (2002) (https://doi.org/10.1016/S0924-0136(02)00013-4).

    Article  Google Scholar 

  5. Yu. N. Loginov, S. L. Demakov, A. G. Illarionov, and M. S. Karabanalov, “Evolution of defects in the production of capillary copper tubes,” J. Mater. Proc. Technol., 224, 80 – 88 (2015) (https://doi.org/10.1016/j.jmatprotec.2015.04.029).

    Article  CAS  Google Scholar 

  6. P. Karnezis and D. C. Farrugia, “Study of cold tube drawing by finite-element modelling,” J. Mater. Proc. Technol., 80, 690 – 694 (https://doi.org/10.1016/S0924-0136(98)00127-7).

  7. K. Şwiątkowski and R. Hatalak, “Study of the new floating-plug drawing process of thin-walled tubes,” J. Mater. Proc. Technol., 151, 105 – 114 (2004) (https://doi.org/10.1016/j.jmatprotec.2004.04.024).

    Article  Google Scholar 

  8. D. Śut’ák, J. Zajac, M. Hatala, et al., “Simulation of rifled tubes drawing process,” IOP Conf. Ser., Mater. Sci. Eng., 776 (2020) (012051 https://doi.org/10.1088/1757-899X/776/1/012051).

  9. Y. N. Loginov, M. S. Shalaeva, S. L. Demakov, et al., “Specific features of tool wear in adaptable drawing of capillary pipes,” J. Frict. Wear, 35, 304 – 310 (2004) (https://doi.org/10.3103/S1068366614040072).

    Article  Google Scholar 

  10. K. Rajan and R. Petkie, “Microtexture and anisotropy in wire drawn copper,” Mater. Sci. Eng. A, 257(1), 185 – 197 (1998) (https://doi.org/10.1016/S0921-5093(98)00838-7).

    Article  Google Scholar 

  11. U. F. Kocks, C. N. Tomé, and H. R. Wenk, Texture and Anisotropy: Preferred Orientations in Polycrystals and their Effect on Materials Properties, Cambridge University Press, Cambridge U.K. (1998).

    Google Scholar 

  12. S. Suwas and R. K. Ray, Crystallographic Texture of Materials, Springer, London (2014), 265 p. (https://doi.org/10.1007/978-1-4471-6314-5).

  13. F. J. Humphreys and M. Hatherly, Recrystallization and Related Annealing Phenomenon, ELSEVIER Ltd., Oxford (2004),628 p. (https://doi.org/10.1016/B978-0-08-044164-1.X5000-2).

  14. M. A. Zorina, M. L. Lobanov, E. A. Makarova, and G M. Rusakov, “Primary recrystallization texture in FCC-metal with low packing defect energy,” Met. Sci. Heat Treat., 60, 329 – 336 (2018) (https://doi.org/10.1007/s11041-018-0280-8).

    Article  CAS  Google Scholar 

  15. M. A. Zorina, A. Y. Zhilyakov, and M. S. Karabanalov, “Crystallographic textures of strain and recrystallization in a superalloy of the Ni – Cr – Mo system,” Met. Sci. Heat Treat., 62, 469 – 474 (2020) (https://doi.org/10.1007/s11041-020-00586-1).

    Article  CAS  Google Scholar 

  16. N. Al-Hamdany, H.-G. Brokmeier, M. Salih, et al., “Crystallographic texture gradient along the wall thickness of an SF-copper tube,” Mater. Character., 139, 125 – 133 (2018) (https://doi.org/10.1016/j.matchar.2018.02.042).

    Article  CAS  Google Scholar 

  17. J.-H. Cho, S.-J. Park, S.-H. Choi, and K. H. Oh, “Deformation texture of cold drawn Al6063 tube,” Mater. Sci. Forum, 408 – 412, 565 – 570 (2002) (10.4028/www.scientific.net/msf.408-412.565).

  18. F. Foadian, S. Khani, A. Carrado, et al., “Multiscale simulation study on the anisotropic behavior of seamless copper tubes processed under varied conditions,” J. Manufact. Proc., 56, 258 – 270 (2020) (https://doi.org/10.1016/j.jmapro.2020.04.074).

    Article  Google Scholar 

  19. A. Carrado, H.-G. Brokmeier, T. Pirling, et al., “Development of residual stresses and texture in drawn copper tubes,” Adv. Eng. Mater., 15, 469 – 475 (2013) (https://doi.org/10.1002/adem.201200161).

    Article  CAS  Google Scholar 

  20. S.-W. Wang, Y. Chen, H.-W. Song, et al., “Investigation of texture transformation paths in copper tube during floating plug drawing process,” Int. J. Mater. Form., 14(4), 563 – 575 (2031) (https://doi.org/10.1007/s12289-020-01538-z).

    Article  Google Scholar 

  21. G. M. Rusakov, M. L. Lobanov, A. A. Redikul’tsev, and A. S. Belyaev, “Special misorientations and textural heredity in the commercial alloy Fe – 3% Si,” Phys. Met. Metall., 115(8), 775 – 785 (2014) (https://doi.org/10.1134/S0031918X14080134).

    Article  Google Scholar 

  22. S. Mahajan, “Formation of annealing twins in f.c.c. crystals,” Acta Mater., 45(6), 2633 – 2638 (1997) (https://doi.org/10.1016/S1359-6454(96)00336-9).

    Article  CAS  Google Scholar 

  23. V. Randle, “Twinning-related grain boundary engineering,” Acta Mater., 52(14), 4067 – 4081 (2004) (https://doi.org/10.1016/j.actamat.2004.05.031).

    Article  CAS  Google Scholar 

  24. V. Randle, “Mechanism of twinning-induced grain boundary engineering in low stacking-fault energy materials,” Acta Mater., 47(15–16), 4187 – 4196 (1999) (https://doi.org/10.1016/S1359-6454(99)00277-3).

    Article  CAS  Google Scholar 

  25. D. P. Field, L. T. Bradford, M. M. Nowell, and T. M. Lillo, “The role of annealing twins during recrystallization of Cu,” Acta Mater., 55(12), 4233 – 4241 (2007) (https://doi.org/10.1016/j.actamat.2007.03.021).

    Article  CAS  Google Scholar 

  26. S. W. Wang, H. W. Song, Y. Chen, et al., “Evolution of annealing twins and recrystallization texture in thin-walled copper tube during heat treatment,” Acta Metall. Sin. (Engl. Lett.), 33, 1618 – 1626 (2020) (https://doi.org/10.1007/s40195-020-01090-4).

    Article  CAS  Google Scholar 

  27. M. A. Zorina, S. V. Danilov, G. M. Rusakov, and M. L. “Interrelation of deformation and recrystallization textures in commercially pure aluminum,” Vestn. Yuzhno-Ural. Gos. Univer., Ser. Metall., 17(3), 73 – 81 (2017).

    Google Scholar 

  28. M. V. Grabskii, Structure of Grain Boundaries in Metals [in Russian], Metallurgiya, Moscow (1972), 160 p.

  29. L. E. Murr, Interfacial Phenomena in Metals and Alloys, Reading, MA, Addison-Wesley Publishing Co. (1975).

  30. Ya. D. Vishnyakov, A. A. Barbareko, S. A. Vladimirov, and I. V. Egiz, The Theory of Texture Formation in Metals and Alloys [in Russian], Nauka, Moscow (1979), 239 p.

  31. C. S. Hong, N. R. Tao, K. Lu, and X. Huang, “Grain orientation dependence of deformation twinning in pure Cu subjected to dynamic plastic deformation,” Scr. Mater., 61(3), 289 – 292 (2009) (https://doi.org/10.1016/j.scriptamat.2009.04.0060.

    Article  CAS  Google Scholar 

Download references

The work has been performed with financial support of a Grant of the President of the Russian Federation (Project MK-5882.2021.4).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. L. Lobanov.

Additional information

Translated from Metallovedenie i Termicheskaya Obrabotka Metallov, No. 1, pp. 3 – 8, January, 2022.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zorina, M.A., Karabanalov, M.S., Loginov, Y.N. et al. Crystallographic Laws of Formation of Recrystallization Texture in a Copper Capillary Tube. Met Sci Heat Treat 64, 3–8 (2022). https://doi.org/10.1007/s11041-022-00753-6

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11041-022-00753-6

Key words

Navigation