Skip to main content
Log in

Effect Feedstock Particle Size on the Properties of Plasma Sprayed WC – 12% Co Coatings on Nitronic 50

  • Published:
Metal Science and Heat Treatment Aims and scope

The effect of the size of initial particles of WC – 12% Co powder on the microstructure and mechanical properties of coatings plasma sprayed onto a substrate from steel Nitronic 50 is studied. The microstructure of the coatings is investigated by scanning electron microscopy and x-ray diffraction. The microhardness and the wear resistance are determined. It is shown that the coatings deposited from the fine powder have greater thickness and almost twice lower porosity than the coatings from the coarse powder. However, the plasma sprayed coarse powder undergoes less decarburization. The coating from WC – 12% Co raises the surface hardness and wear resistance of Nitronic 50 by a factor of 6 – 7.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

References

  1. R. J. K. Wood, “Tribology of thermal sprayed WC–Co coatings,” Int. J. Refr. Met. Hard Coat., 28(1), 82 – 94 (2010).

    Article  CAS  Google Scholar 

  2. R. M. Mohanty and M. Roy, “Thermal sprayed WC – Co coatings for tribological application,” in: Paulo Davim (ed.), Materials and Surface Engineering, Woodhead Publishing (2012), pp. 121 – 162.

    Chapter  Google Scholar 

  3. M. Karabaş and E. Mertgenç, “Plazma püskürtme ile üretilmiş beyaz ve gri Al2O3 kaplamalarýn mekanik özellikleri,” J. Mater. Mechatronics A, 1(1), 22 – 28 (2020).

  4. L. Pawlowski, The Science and Engineering of Thermal Spray Coatings, John Wiley & Sons (2008), 626 p.

  5. Sohi M. Hyedarzadeh and F. Ghadami, “Comparative tribological study of air plasma sprayed WC – 12% Co coating versus conventional hard chromium electrodeposit,” Trib. Int., 43(5), 882 – 886 (2010).

    Article  Google Scholar 

  6. Z. Geng, S. Hou, G. Shi, et al., “Tribological behaviour at various temperatures of WC – Co coatings prepared using different thermal spraying techniques,” Trib. Int., 104, 36 – 44 (2016).

    Article  CAS  Google Scholar 

  7. G. Di Girolamo, L. Pilloni, G. Pulci, and F. Marra, “Tribological characterization of WC – Co plasma sprayed coatings,” J. Am. Ceram. Soc., 92, 1118 – 1124 (2009).

    Article  Google Scholar 

  8. E. Sanchez, E. Bannier, M, D, Salvador, et al., “Microstructure and wear behavior of conventional and nanostructured plasma- sprayed WC – Co coatings,” J. Therm. Spray Technol., 19, 964 – 974 (2010).

  9. P. Chivavibul, M.Watanabe, S. Kuroda, et al., “Effect of powder characteristics on properties of warm-sprayed WC – Co coatings,” J. Therm. Spray Technol., 19(1), 81 – 88 (2010).

    Article  CAS  Google Scholar 

  10. Babu P. Suresh, D. S. Rao, G. V. N. Rao, and G. Sundararajan, “Effect of feedstock size and its distribution on the properties of detonation sprayed coatings,” J. Therm. Spray Technol., 16(2), 281 – 290 (2007).

    Article  Google Scholar 

  11. S. Al-Mutairi, M. S. J. Hashimi, B. S. Yilbas, and J. Stokes, “Microstructural characterization of HVOF_plasma thermal spray of minro/nano WC – 12% Co powders,” Surf. Coat. Technol., 264, 175 – 186 (2015).

    Article  CAS  Google Scholar 

  12. W.-G. Guo and S. Nemat-Nasser, “Flow stress of Nitronic-50 stainless steel over a wide range of strain rates and temperatures,” Mech. Mater., 38(11), 1090 – 1103 (2006).

    Article  Google Scholar 

  13. F. H. Abed, S. I. Ranganathan, and M. A. Serry, “Constitutive modeling of nitrogen-alloyed austenitic stainless steel at low and high strain rates and temperatures,” Mech. Mater., 77, 142 – 157 (2014).

    Article  Google Scholar 

  14. E. Mertgenc, “Examination of wear and rockwell-C adhesion properties of Nitronic 50 steel coated with pack boriding method,” Sakarya Univ. J. Sci., 528 – 537 (2020).

  15. J. Pulsford, S. Amnis, J. Murray, et al., “Effect of particle and carbide grain sizes on a HVOAF WC – Co – Cr coating for the future application on internal surfaces: microstructure and wear,” J. Therm. Spray Technol., 27(1), 207 – 219 (2018).

    Article  CAS  Google Scholar 

  16. J. A. Picas, E. Ruperez, M. Punset, and A. Forn, “Influence of HVOF spraying parameters on the corrosion resistance of WC – CoCr coatings in strong acidic environment,” Surf. Coat. Technol., 225, 47 – 57 (2013).

    Article  CAS  Google Scholar 

  17. G. Irons, “Higher velocity thermal spray processes produce better aircraft engine coatings,” SAE Trans., 101, 79 – 85 (1992).

    Google Scholar 

  18. W. Tillmann, O. Khalil, and M. Abdulgader, “Porosity characterization and its effect on thermal properties of APS-sprayed alumina coatings,” Coatings, 9, Art. 601 (2019).

  19. P. Ctibor, M. Kašparová, J. Bellin, et al., “Plasma spraying and characterization of tungsten carbide-cobalt coatings by the water-stabilized system WSP,” Adv. Mater. Sci. Eng., ID 254848 (2009).

  20. H. Li. K. A. Khor, L. G. Yu, and P. Cheang, “Microstructure modifications and phase transformation in plasma-sprayed WC – Co coatings following post-spray spark plasma sintering,” Surf. Coat. Technol., 194(1), 96 – 102 (2005).

    Article  CAS  Google Scholar 

  21. M. E. Vinayo, F. Kassabji, J. Guyonnet, and P. Fauchais, “Plasma sprayed WC – Co coatings: Influence of spray conditions (atmosphere and low pressure plasma spraying) on the crystal structure, porosity, and hardness,” J. Vacuum Sci. Technol. A, 3(6), 2483 – 2489 (1985).

    Article  CAS  Google Scholar 

  22. H. J. Kim, Y. G. Kweon, and R. W. Chang, “Wear and erosion behavior of plasma-sprayed WC – Co coatings,” J. Therm. Spray Technol., 3(2), 169 – 178 (1994).

    Article  CAS  Google Scholar 

  23. M. Afzal, M. Ajmal, and A. N. Khan, “Wear behavior of WC – 12% Co coatings produced by air plasma spraying at different standoff distances,” Tribol. Trans., 57(1), 94 – 103 (2014).

    Article  CAS  Google Scholar 

  24. A. Nouri and A. Sola, “Powder morphology in thermal spraying,” 1(3) (2019).

  25. K. H. Baik, J. H. Kim, and B. G. Seong, “Improvements in hardness and wear resistance of thermally sprayed WC – Co nanocomposite coatings,” Mater. Sci. Eng. A, 449 – 451, 846 – 849 (2007).

  26. R. Liu and D. Y. Li, “Modification of archard’s equation by taking account of elastic/pseudoelastic properties of materials,” Wear, 251(1), 956 – 964 (2001).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Translated from Metallovedenie i Termicheskaya Obrabotka Metallov, No. 1, pp. 55 – 61, January, 2022.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mertgenç, E., Karabas, M. & Kayali, Y. Effect Feedstock Particle Size on the Properties of Plasma Sprayed WC – 12% Co Coatings on Nitronic 50. Met Sci Heat Treat 64, 56–62 (2022). https://doi.org/10.1007/s11041-022-00761-6

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11041-022-00761-6

Key words

Navigation