Skip to main content
Log in

Graphene/Nanotube Quasi-1D-Structures in Strong Electric Fields

  • Published:
Physics of the Solid State Aims and scope Submit manuscript

Abstract

Energetically stable atomistic models of graphene/nanotube quasi-one-dimensional (1D) structures based on the chiral carbon nanotube (6,5), graphene nanoribbons, and graphene flakes are constructed. In silico studies of the density distribution of the electron charge, band structure, and conductance of quasi-1D-structures are performed. It was found that, in contrast to nanotubes and graphene, the transmission function of quasi-1D-structures has an intensity peak at the Fermi level. The effect of strong electric fields of 107–108 V/cm on the atomic and electronic structure of quasi-1D-structures is also studied. As a result of quantum molecular-dynamics simulation, systematic features of atomic core deformation and destruction under a ponderomotive force are determined. A critical strength at which electric field detaches graphene from a tube is determined. It is ~2 × 108 V/cm. A further increase results in graphene detachment from a tube with its simultaneous fracture.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

REFERENCES

  1. A. K. Geim and K. S. Novoselov, Nat. Mater. 6, 183 (2007).

    Article  ADS  Google Scholar 

  2. V. Georgakilas, J. A. Perman, J. Tucek, and R. Zboril, Chem. Rev. 115, 4744 (2015).

    Article  Google Scholar 

  3. M. F. L. de Volder, S. H. Tawfick, R. H. Baughman, and A. J. Hart, Science (Washington, DC, U. S.) 339, 535 (2013).

    Article  ADS  Google Scholar 

  4. V. T. Dang, D. C. Nguyen, T. T. Cao, P. H. Le, D. L. Tran, N. M. Phan, and V. C. Nguyen, Adv. Nat. Sci.: Nanosci. Nanotechnol. 7, 033002 (2016).

    ADS  Google Scholar 

  5. Y. Li, Q. Ai, L. Mao, J. Guo, T. Gong, Y. Lin, G. Wu, W. Huang, and X. Zhang, Sci. Rep. 11, 21006 (2021).

    Article  ADS  Google Scholar 

  6. R. Ghosh, T. Maruyama, H. Kondo, K. Kimoto, T. Nagai, and S. Iijima, Chem. Commun. 51, 8974 (2015).

    Article  Google Scholar 

  7. E. Shi, H. Li, L. Yang, J. Hou, Y. Li, L. Li, A. Cao, and Y. Fang, Adv. Mater. 27, 682 (2015).

    Article  Google Scholar 

  8. L. A. Chernozatonskii, P. B. Sorokin, and A. A. Artyukh, Russ. Chem. Rev. 83, 251 (2014).

    Article  ADS  Google Scholar 

  9. A. L. Gorkina, A. P. Tsapenko, E. P. Gilshteyn, T. S. Koltsova, T. V. Larionova, A. Talyzin, A. S. Anisimov, I. V. Anoshkin, E. I. Kauppinen, O. V. Tolochko, and A. G. Nasibulin, Carbon 100, 501 (2016).

    Article  Google Scholar 

  10. W. Du, Z. Ahmed, Q. Wang, C. Yu, Z. Feng, G. Li, M. Zhang, C. Zhou, R. Senegor, and C. Y. Yang, 2D Mater. 6, 042005 (2019).

  11. G. K. Dimitrakakis, E. Tylianakis, and G. E. Froudakis, Nano Lett. 8, 3166 (2008).

    Article  ADS  Google Scholar 

  12. W. Wang, M. Ozkan, and C. S. Ozkan, J. Mater. Chem. A 4, 3356 (2016).

    Article  Google Scholar 

  13. M. Q. Zhao, X. F. Liu, Q. Zhang, G. L. Tian, J. Q. Huang, W. Zhu, and F. Wei, ACS Nano 6, 10759 (2012).

    Article  Google Scholar 

  14. Y. Zhu, L. Li, C. Zhang, G. Casillas, Z. Sun, Z. Yan, G. Ruan, Z. Peng, A. R. O. Raji, C. Kittrell, R. H. Hauge, and J. M. Tour, Nat. Commun. 3, 1225 (2012).

    Article  ADS  Google Scholar 

  15. F. Du, D. Yu, L. Dai, S. Ganguli, V. Varshney, and A. K. Roy, Chem. Mater. 23, 4810 (2011).

    Article  Google Scholar 

  16. A. Hassani, M. T. H. Mosavian, A. Ahmadpour, and N. Farhadian, J. Chem. Phys. 142, 234704 (2015).

    Article  ADS  Google Scholar 

  17. I. N. Kholmanov, C. W. Magnuson, R. Piner, J. Y. Kim, A. E. Aliev, C. Tan, T. Y. Kim, A. A. Zakhidov, G. Sberveglieri, R. H. Baughman, and R. S. Ruoff, Adv. Mater. 27, 3053 (2015).

    Article  Google Scholar 

  18. F. Tristán-López, A. Morelos-Gómez, S. M. Vega-Díaz, M. L. García-Betancourt, N. Perea-López, A. L. Elías, H. Muramatsu, R. Cruz-Silva, S. Tsuruoka, Y. A. Kim, T. Hayahsi, K. Kaneko, M. Endo, and M. Terrones, ACS Nano 7, 10788 (2013).

    Article  Google Scholar 

  19. S. H. Kim, W. Song, M. W. Jung, M. A. Kang, K. Kim, S. J. Chang, S. S. Lee, J. Lim, J. Hwang, S. Myung, and K. S. An, Adv. Mater. 26, 4247 (2014).

    Article  Google Scholar 

  20. X. Gan, R. Lv, J. Bai, Z. Zhang, J. Wei, Z. H. Huang, H. Zhu, F. Kang, and M. Terrones, 2D Mater. 2, 034003 (2015).

  21. Z. Yan, Z. Peng, G. Casillas, J. Lin, C. Xiang, H. Zhou, Y. Yang, G. Ruan, A. R. Raji, E. L. Samuel, R. H. Hauge, M. J. Yacaman, and J. M. Tour, ACS Nano 8, 5061 (2014).

    Article  Google Scholar 

  22. Z. Chen, T. Lv, Y. Yao, H. Li, N. Li, Y. Yang, K. Liu, G. Qian, X. Wang, and T. Chen, J. Mater. Chem. A 7, 24792 (2019).

    Article  Google Scholar 

  23. X. Yang, D. Yu, B. Cao, and A. C. To, ACS Appl. Mater. Interfaces 9, 29 (2017).

    Article  Google Scholar 

  24. K. Duan, L. Li, Y. Hu, and X. Wang, Sci. Rep. 7, 14012 (2017).

    Article  ADS  Google Scholar 

  25. A. Pedrielli, S. Taioli, G. Garberoglio, and N. M. Pugno, Microporous Mesoporous Mater. 257, 222 (2018).

    Article  Google Scholar 

  26. J. Chen, J. H. Walther, and P. Koumoutsakos, Nanotechnology 27, 465705 (2016).

    Article  ADS  Google Scholar 

  27. Y. Liu, Y. Liu, S. Qin, Y. Xu, R. Zhang, and F. Wang, Nano Res. 10, 1880 (2016).

    Article  Google Scholar 

  28. B. Cai, H. Yin, T. Huo, J. Ma, Z. Di, M. Li, N. Hu, Z. Yang, Y. Zhang, and Y. Su, J. Mater. Chem. C 8, 3386 (2020).

    Article  Google Scholar 

  29. B. Liu, M. Alamri, M. Walsh, J. L. Doolin, C. L. Berrie, and J. Z. Wu, ACS Appl. Mater. Interfaces 12, 53115 (2020).

    Article  Google Scholar 

  30. H. Kim, J. Kim, H. S. Jeong, H. Kim, H. Lee, J. M. Ha, S. M. Choi, T. H. Kim, Y. C. Nah, T. J. Shin, J. Bang, S. K. Satijag, and J. Koo, Chem. Commun. 54, 5229 (2018).

    Article  Google Scholar 

  31. Q. Cheng, J. Tang, J. Ma, H. Zhang, N. Shinyaa, and L.-C. Qinc, Phys. Chem. Chem. Phys. 13, 17615 (2011).

    Article  Google Scholar 

  32. R. T. Lv, E. Cruz-Silva, and M. Terrones, ACS Nano 8, 4061 (2014).

    Article  Google Scholar 

  33. X. L. Li, J. W. Sha, S. K. Lee, Y. L. Li, Y. S. Ji, Y. J. Zhao, and J. M. Tour, ACS Nano 10, 7307 (2016).

    Article  Google Scholar 

  34. L. Cai, X. Xue, M. Liu, H. Li, X. Zhou, and G. Yu, APL Mater. 9, 041110 (2021).

    Article  ADS  Google Scholar 

  35. E. F. Sheka, L. A. Chernozatonskii, and A. A. Artyukh, JETP Lett. 89, 352 (2009).

    Article  ADS  Google Scholar 

  36. L. A. Chernozatonskii and P. B. Sorokin, ECS Trans. 19, 35 (2009).

    Article  Google Scholar 

  37. E. F. Sheka and L. A. Chernozatonskii, J. Comput. Theor. Nanosci. 7, 1814 (2010).

    Article  Google Scholar 

  38. A. A. Artyukh, L. A. Chernozatonskii, and P. B. Sorokin, Phys. Status Solidi B 247, 2927 (2010).

    Article  ADS  Google Scholar 

  39. V. V. Ivanovskaya, A. Zobelli, P. Wagner, M. I. Heggie, P. R. Briddon, M. J. Rayson, and C. P. Ewels, Phys. Rev. Lett. 107, 065502 (2011).

    Article  ADS  Google Scholar 

  40. M. A. Akhukov, S. Yuan, A. Fasolino, and M. I. Katsnelson, New J. Phys. 14, 123012 (2012).

    Article  ADS  Google Scholar 

  41. O. E. Glukhova, I. S. Nefedov, A. S. Shalin, and M. M. Slepchenkov, Beilstein J. Nanotechnol. 9, 1321 (2018).

    Article  Google Scholar 

  42. J. Gonga and P. Yang, RSC Adv. 4, 19622 (2014).

  43. T. Matsumoto and S. Saito, J. Phys. Soc. Jpn. 71, 2765 (2002).

    Article  ADS  Google Scholar 

  44. Y. Mao and J. Zhong, New J. Phys. 11, 093002 (2009).

    Article  ADS  Google Scholar 

  45. F. D. Novaes, R. Rurali, and P. Ordejón, ACS Nano 4, 7596 (2010).

    Article  Google Scholar 

  46. J. Chen, J. H. Walther, and P. Koumoutsakos, Adv. Funct. Mater. 25, 7539 (2015).

    Article  Google Scholar 

  47. V. Varshney, S. S. Patnaik, A. K. Roy, G. Froudakis, and B. L. Farmer, ACS Nano 4, 1153 (2010).

    Article  Google Scholar 

  48. Z. Zhang, A. Kutana, A. Roy, and B. I. Yakobson, J. Phys. Chem. C 121, 1257 (2017).

    Article  Google Scholar 

  49. D. D. Nguyen, R. N. Tiwari, Y. Matsuoka, G. Hashimoto, E. Rokuta, Y. Chen, Y. L. Chueh, and M. Yoshimura, ACS Appl. Mater. Interfaces 6, 9071 (2014).

    Article  Google Scholar 

  50. M. Song, P. Xu, Y. Song, X. Wang, Z. Li, X. Shang, H. Wu, P. Zhao, and M. Wang, AIP Adv. 5, 097130 (2015).

    Article  ADS  Google Scholar 

  51. S. Riyajuddin, S. Kumar, K. Soni, S. P. Gaur, D. Bad-hwar, and K. Ghosh, Nanotechnology 30, 385702 (2019).

    Article  Google Scholar 

  52. A. T. T. Koh, T. Chen, L. Pan, Z. Sun, and D. H. C. Chua, J. Appl. Phys. 113, 174909 (2013).

    Article  ADS  Google Scholar 

  53. L. Chen, H. He, H. Yu, Y. Cao, D. Lei, Q. Menggen, C. Wu, and L. Hu, J. Alloys Compd. 610, 659 (2014).

    Article  Google Scholar 

  54. X. Hong, W. Shi, H. Zheng, and D. Liang, Vacuum 169, 108917 (2019).

    Article  ADS  Google Scholar 

  55. A. Y. Gerasimenko, A. V. Kuksin, Y. P. Shaman, E. P. Kitsyuk, Y. O. Fedorova, A. V. Sysa, A. A. Pavlov, and O. E. Glukhova, Nanomaterials 11, 1875 (2021).

    Article  Google Scholar 

  56. B. Hourahine, B. Aradi, V. Blum, F. Bonafé, A. Buccheri, C. Camacho, C. Cevallos, M. Y. Deshaye, T. Dumitrica, A. Dominguez, S. Ehlert, M. Elstner, T. van der Heide, J. Hermann, S. Irle, et al., J. Chem. Phys. 152, 124101 (2020).

    Article  ADS  Google Scholar 

  57. H. J. Monkhorst and J. D. Pack, Phys. Rev. B 13, 5188 (1976).

    Article  ADS  MathSciNet  Google Scholar 

  58. A. K. Rappe, C. J. Casewit, K. S. Colwell, W. A. Goddard III, and W. M. Skiff, J. Am. Chem. Soc. 114, 10024 (1992).

    Article  Google Scholar 

  59. S. Datta, Quantum Transport: Atom to Transistor (Cambridge Univ. Press, New York, 2005).

    Book  MATH  Google Scholar 

  60. B. Aradi, A. M. N. Niklasson, and T. Frauenheim, J. Chem. Theory Comput. 11, 3357 (2015).

    Article  Google Scholar 

  61. R. Car and M. Parrinello, Phys. Rev. Lett. 55, 2471 (1985).

    Article  ADS  Google Scholar 

Download references

Funding

This study was supported by the Russian Science Foundation, project no. 21-19-00226.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to O. E. Glukhova.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by A. Kazantsev

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Glukhova, O.E., Slepchenkov, M.M. Graphene/Nanotube Quasi-1D-Structures in Strong Electric Fields. Phys. Solid State 64, 185–192 (2022). https://doi.org/10.1134/S106378342205002X

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S106378342205002X

Keywords:

Navigation