Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Genetics of irritable bowel syndrome: shifting gear via biobank-scale studies

Abstract

The pathophysiology of irritable bowel syndrome (IBS) is multifactorial and probably involves genetic predisposition and the effect of environmental factors. Unlike other gastrointestinal diseases with a heritable component, genetic research in IBS has been scarce and mostly characterized by small underpowered studies, leading to inconclusive results. The availability of genomic and health-related data from large international cohorts and population-based biobanks offers unprecedented opportunities for long-awaited, well-powered genetic studies in IBS. This Review focuses on the latest advances that provide compelling evidence for the importance of genes involved in the digestion of carbohydrates, ion channel function, neurotransmitters and their receptors, neuronal pathways and the control of gut motility. These discoveries have generated novel information that might be further refined for the identification of predisposed individuals and selection of management strategies for patients. This Review presents a conceptual framework, the advantages and potential limitations of modern genetic research in IBS, and a summary of available evidence.

Key points

  • The pathophysiological mechanisms associated with irritable bowel syndrome (IBS) are only partially understood; this hampers the development of targeted therapeutic strategies.

  • Genetic research can reveal actionable pathways, but findings have generally been scarce in IBS because genetic investigations have been small scale and based on single-gene approaches that have highlighted only a few putative risk genes related to serotonergic mechanisms, carbohydrate digestion or ion channels.

  • Large-scale, biobank-wide genome-wide association studies (GWAS) that focused on IBS and endophenotypic proxies of gut motility have been reported, and have led to the identification of the first set of unequivocal risk loci.

  • These loci contain several genes relevant to pathways and cell types implicated in the central and enteric nervous system activities, neurotransmitter signalling and enteric motor neuron function; these findings offer avenues for testing novel therapeutic strategies.

  • The genetic architecture of IBS identified to date through GWAS often seems to be shared with comorbid mood disorders and anxiety, which is consistent with the reported efficacy of psychotropic and cognitive therapies in IBS.

  • Polygenic scores derived from GWAS data enabled the identification of individuals at increased risk of IBS in the studied cohorts and could be further refined and validated in independent translational studies.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Risk factors, pathophysiological mechanisms and intermediate phenotypes contributing to IBS.
Fig. 2: Pathways that have emerged from candidate gene studies in IBS.
Fig. 3: Conceptual framework for the translation of genetic findings to patient stratification in IBS.

Similar content being viewed by others

References

  1. Drossman, D. A. & Tack, J. Rome Foundation clinical diagnostic criteria for disorders of gut-brain interaction. Gastroenterology 162, 675–679 (2022).

    Article  PubMed  Google Scholar 

  2. Ford, A. C., Sperber, A. D., Corsetti, M. & Camilleri, M. Irritable bowel syndrome. Lancet 396, 1675–1688 (2020).

    Article  CAS  PubMed  Google Scholar 

  3. Drossman, D. A. Functional gastrointestinal disorders: history, pathophysiology, clinical features and Rome IV. Gastroenterology 150, 1262–1279 (2016).

    Article  Google Scholar 

  4. Drossman, D. A. & Hasler, W. L. Rome IV–functional GI disorders: disorders of gut-brain interaction. Gastroenterology 150, 1257–1261 (2016).

    Article  PubMed  Google Scholar 

  5. Lewis, S. J. & Heaton, K. W. Stool form scale as a useful guide to intestinal transit time. Scand. J. Gastroenterol. 32, 920–924 (1997).

    Article  CAS  PubMed  Google Scholar 

  6. Buono, J. L., Carson, R. T. & Flores, N. M. Health-related quality of life, work productivity, and indirect costs among patients with irritable bowel syndrome with diarrhea. Health Qual. Life Outcomes 15, 35 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  7. Frändemark, Å., Törnblom, H., Jakobsson, S. & Simrén, M. Work productivity and activity impairment in irritable bowel syndrome (IBS): a multifaceted problem. Am. J. Gastroenterol. 113, 1540–1549 (2018).

    Article  PubMed  Google Scholar 

  8. Camilleri, M. Diagnosis and treatment of irritable bowel syndrome: a review. JAMA 325, 865–877 (2021).

    Article  CAS  PubMed  Google Scholar 

  9. Drossman, D. A. Do psychosocial factors define symptom severity and patient status in irritable bowel syndrome? Am. J. Med. 107, 41–50 (1999).

    Article  Google Scholar 

  10. Palsson, O. S. & Drossman, D. A. Psychiatric and psychological dysfunction in irritable bowel syndrome and the role of psychological treatments. Gastroenterol. Clin. North. Am. 34, 281–303 (2005).

    Article  PubMed  Google Scholar 

  11. Camilleri, M. Peripheral mechanisms in irritable bowel syndrome. N. Engl. J. Med. 367, 1626–1635 (2012).

    Article  CAS  PubMed  Google Scholar 

  12. Ohman, L. & Simrén, M. Pathogenesis of IBS: role of inflammation, immunity and neuroimmune interactions. Nat. Rev. Gastroenterol. Hepatol. 7, 163–173 (2010).

    Article  PubMed  Google Scholar 

  13. Bennet, S. M. P., Ohman, L. & Simren, M. Gut microbiota as potential orchestrators of irritable bowel syndrome. Gut Liver 9, 318–331 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  14. Moayyedi, P., Simrén, M. & Bercik, P. Evidence-based and mechanistic insights into exclusion diets for IBS. Nat. Rev. Gastroenterol. Hepatol. 17, 406–413 (2020).

    Article  CAS  PubMed  Google Scholar 

  15. Lackner, J. M. et al. Type, rather than number, of mental and physical comorbidities increases the severity of symptoms in patients with irritable bowel syndrome. Clin. Gastroenterol. Hepatol. 11, 1147–1157 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  16. D’Amato, M. Genes and functional GI disorders: from casual to causal relationship. Neurogastroenterol. Motil. 25, 638–649 (2013).

    Article  PubMed  Google Scholar 

  17. Waehrens, R., Ohlsson, H., Sundquist, J., Sundquist, K. & Zöller, B. Risk of irritable bowel syndrome in first-degree, second-degree and third-degree relatives of affected individuals: a nationwide family study in Sweden. Gut 64, 215–221 (2015).

    Article  PubMed  Google Scholar 

  18. Camilleri, M. Genetics and irritable bowel syndrome: from genomics to intermediate phenotype and pharmacogenetics. Dig. Dis. Sci. 54, 2318–2324 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Heitkemper, M. M., Kohen, R., Jun, S.-E. & Jarrett, M. E. Genetics and gastrointestinal symptoms. Annu. Rev. Nurs. Res. 29, 261–280 (2011).

    Article  PubMed  Google Scholar 

  20. Saito, Y. A. The role of genetics in IBS. Gastroenterol. Clin. North. Am. 40, 45–67 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  21. Mawe, G. M. & Hoffman, J. M. Serotonin signalling in the gut–functions, dysfunctions and therapeutic targets. Nat. Rev. Gastroenterol. Hepatol. 10, 473–486 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Bellono, N. W. et al. Enterochromaffin cells are gut chemosensors that couple to sensory neural pathways. Cell 170, 185–198 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Grudell, A. B. M. et al. An exploratory study of the association of adrenergic and serotonergic genotype and gastrointestinal motor functions. Neurogastroenterol. Motil. 20, 213–219 (2008).

    Article  CAS  PubMed  Google Scholar 

  24. Camilleri, M. et al. Alterations in expression of p11 and SERT in mucosal biopsy specimens of patients with irritable bowel syndrome. Gastroenterology 132, 17–25 (2007).

    Article  CAS  PubMed  Google Scholar 

  25. Kim, H. J. et al. Association of distinct α2 adrenoceptor and serotonin transporter polymorphisms with constipation and somatic symptoms in functional gastrointestinal disorders. Gut 53, 829–837 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Camilleri, M. et al. Serotonin-transporter polymorphism pharmacogenetics in diarrhea-predominant irritable bowel syndrome. Gastroenterology 123, 425–432 (2002).

    Article  CAS  PubMed  Google Scholar 

  27. Mohr, S. et al. The alternative serotonin transporter promoter P2 impacts gene function in females with irritable bowel syndrome. J. Cell. Mol. Med. 25, 8047–8061 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Gunn, D. et al. Abnormalities of mucosal serotonin metabolism and 5-HT3 receptor subunit 3C polymorphism in irritable bowel syndrome with diarrhoea predict responsiveness to ondansetron. Aliment. Pharmacol. Ther. 50, 538–546 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Wohlfarth, C. et al. miR-16 and miR-103 impact 5-HT4 receptor signalling and correlate with symptom profile in irritable bowel syndrome. Sci. Rep. 7, 14680 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  30. Kilpatrick, L. et al. The HTR3A polymorphism c. -42C>T is associated with amygdala responsiveness in patients with irritable bowel syndrome. Gastroenterology 140, 1943–1951 (2011).

    Article  CAS  PubMed  Google Scholar 

  31. Niesler, B. et al. 5-HTTLPR and STin2 polymorphisms in the serotonin transporter gene and irritable bowel syndrome: effect of bowel habit and sex. Eur. J. Gastroenterol. Hepatol. 22, 856–861 (2010).

    Article  CAS  PubMed  Google Scholar 

  32. Kapeller, J. et al. First evidence for an association of a functional variant in the microRNA-510 target site of the serotonin receptor-type 3E gene with diarrhea predominant irritable bowel syndrome. Hum. Mol. Genet. 17, 2967–2977 (2008).

    Article  CAS  PubMed  Google Scholar 

  33. Li, Y. et al. The association of serotonin transporter genetic polymorphisms and irritable bowel syndrome and its influence on tegaserod treatment in Chinese patients. Dig. Dis. Sci. 52, 2942–2949 (2007).

    Article  CAS  PubMed  Google Scholar 

  34. Boesmans, W., Owsianik, G., Tack, J., Voets, T. & Vanden Berghe, P. TRP channels in neurogastroenterology: opportunities for therapeutic intervention. Br. J. Pharmacol. 162, 18–37 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Fuentes, I. M. & Christianson, J. A. Ion channels, ion channel receptors, and visceral hypersensitivity in irritable bowel syndrome. Neurogastroenterol. Motil. 28, 1613–1618 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Locke, G. R., Ackerman, M. J., Zinsmeister, A. R., Thapa, P. & Farrugia, G. Gastrointestinal symptoms in families of patients with an SCN5A-encoded cardiac channelopathy: evidence of an intestinal channelopathy. Am. J. Gastroenterol. 101, 1299–1304 (2006).

    Article  CAS  PubMed  Google Scholar 

  37. Beyder, A. et al. Loss-of-function of the voltage-gated sodium channel NaV1.5 (channelopathies) in patients with irritable bowel syndrome. Gastroenterology 146, 1659–1668 (2014).

    Article  CAS  PubMed  Google Scholar 

  38. Strege, P. R. et al. Irritable bowel syndrome patients have SCN5A channelopathies that lead to decreased NaV1.5 current and mechanosensitivity. Am. J. Physiol. Gastrointest. Liver Physiol. 314, G494–G503 (2018).

    Article  CAS  PubMed  Google Scholar 

  39. Sanders, K. M., Ward, S. M. & Koh, S. D. Interstitial cells: regulators of smooth muscle function. Physiol. Rev. 94, 859–907 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Henström, M. et al. TRPM8 polymorphisms associated with increased risk of IBS-C and IBS-M. Gut 66, 1725–1727 (2017).

    Article  PubMed  Google Scholar 

  41. Khanna, R., MacDonald, J. K. & Levesque, B. G. Peppermint oil for the treatment of irritable bowel syndrome: a systematic review and meta-analysis. J. Clin. Gastroenterol. 48, 505–512 (2014).

    Article  PubMed  Google Scholar 

  42. Gericke, B., Amiri, M. & Naim, H. Y. The multiple roles of sucrase-isomaltase in the intestinal physiology. Mol. Cell. Pediatr. 3, 2 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  43. Gericke, B., Amiri, M., Scott, C. R. & Naim, H. Y. Molecular pathogenicity of novel sucrase-isomaltase mutations found in congenital sucrase-isomaltase deficiency patients. Biochim. Biophys. Acta Mol. Basis Dis. 1863, 817–826 (2017).

    Article  CAS  PubMed  Google Scholar 

  44. Alfalah, M., Keiser, M., Leeb, T., Zimmer, K.-P. & Naim, H. Y. Compound heterozygous mutations affect protein folding and function in patients with congenital sucrase-isomaltase deficiency. Gastroenterology 136, 883–892 (2009).

    Article  CAS  PubMed  Google Scholar 

  45. Foley, A. et al. Adult sucrase-isomaltase deficiency masquerading as IBS. Gut 71, 1237–1238 (2021).

    Article  PubMed  Google Scholar 

  46. Muldoon, C., Maguire, P. & Gleeson, F. Onset of sucrase-isomaltase deficiency in late adulthood. Am. J. Gastroenterol. 94, 2298–2299 (1999).

    Article  CAS  PubMed  Google Scholar 

  47. Ringrose, R. E., Preiser, H. & Welsh, J. D. Sucrase-isomaltase (palatinase) deficiency diagnosed during adulthood. Dig. Dis. Sci. 25, 384–387 (1980).

    Article  CAS  PubMed  Google Scholar 

  48. Henström, M. et al. Functional variants in the sucrase-isomaltase gene associate with increased risk of irritable bowel syndrome. Gut 67, 263–270 (2018).

    Article  PubMed  Google Scholar 

  49. Thingholm, L. et al. Sucrase-isomaltase 15Phe IBS risk variant in relation to dietary carbohydrates and faecal microbiota composition. Gut 68, 177–178 (2019).

    Article  CAS  PubMed  Google Scholar 

  50. Garcia-Etxebarria, K. et al. Increased prevalence of rare sucrase-isomaltase pathogenic variants in irritable bowel syndrome patients. Clin. Gastroenterol. Hepatol. 16, 1673–1676 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Chumpitazi, B. P. et al. Hypomorphic SI genetic variants are associated with childhood chronic loose stools. PLoS ONE 15, e0231891 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Zheng, T. et al. Rare hypomorphic sucrase isomaltase variants in relation to irritable bowel syndrome risk in UK biobank. Gastroenterology 161, 1712–1714 (2021).

    Article  CAS  PubMed  Google Scholar 

  53. Zheng, T. et al. Reduced efficacy of low FODMAPs diet in patients with IBS-D carrying sucrase-isomaltase (SI) hypomorphic variants. Gut 69, 397–398 (2020).

    Article  PubMed  Google Scholar 

  54. Nilholm, C., Roth, B. & Ohlsson, B. A dietary intervention with reduction of starch and sucrose leads to reduced gastrointestinal and extra-intestinal symptoms in IBS patients. Nutrients 11, E1662 (2019).

    Article  PubMed  Google Scholar 

  55. Klein, R. J. et al. Complement factor H polymorphism in age-related macular degeneration. Science 308, 385–389 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Jostins, L. et al. Host-microbe interactions have shaped the genetic architecture of inflammatory bowel disease. Nature 491, 119–124 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Liu, J. Z. et al. Association analyses identify 38 susceptibility loci for inflammatory bowel disease and highlight shared genetic risk across populations. Nat. Genet. 47, 979–986 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. de Lange, K. M. et al. Genome-wide association study implicates immune activation of multiple integrin genes in inflammatory bowel disease. Nat. Genet. 49, 256–261 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  59. Dubois, P. C. A. et al. Multiple common variants for celiac disease influencing immune gene expression. Nat. Genet. 42, 295–302 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Trynka, G. et al. Dense genotyping identifies and localizes multiple common and rare variant association signals in celiac disease. Nat. Genet. 43, 1193–1201 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Coleman, C. et al. Common polygenic variation in coeliac disease and confirmation of ZNF335 and NIFA as disease susceptibility loci. Eur. J. Hum. Genet. 24, 291–297 (2016).

    Article  CAS  PubMed  Google Scholar 

  62. Smyth, D. J. et al. Shared and distinct genetic variants in type 1 diabetes and celiac disease. N. Engl. J. Med. 359, 2767–2777 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Jefremow, A. & Neurath, M. F. All are equal, some are more equal: targeting IL 12 and 23 in IBD - a clinical perspective. Immunotargets Ther. 9, 289–297 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Seyed Tabib, N. S. et al. Big data in IBD: big progress for clinical practice. Gut 69, 1520–1532 (2020).

    Article  PubMed  Google Scholar 

  65. Gettler, K. et al. Common and rare variant prediction and penetrance of IBD in a large, multi-ethnic, health system-based biobank cohort. Gastroenterology 160, 1546–1557 (2021).

    Article  CAS  PubMed  Google Scholar 

  66. Uffelmann, E. et al. Genome-wide association studies. Nat. Rev. Methods Prim. 1, 59 (2021).

    Article  CAS  Google Scholar 

  67. Wijmenga, C. & Zhernakova, A. The importance of cohort studies in the post-GWAS era. Nat. Genet. 50, 322–328 (2018).

    Article  CAS  PubMed  Google Scholar 

  68. Bycroft, C. et al. The UK biobank resource with deep phenotyping and genomic data. Nature 562, 203–209 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Eijsbouts, C. et al. Genome-wide analysis of 53,400 people with irritable bowel syndrome highlights shared genetic pathways with mood and anxiety disorders. Nat. Genet. 53, 1543–1552 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Ek, W. E. et al. Exploring the genetics of irritable bowel syndrome: a GWA study in the general population and replication in multinational case-control cohorts. Gut 64, 1774–1782 (2015).

    Article  CAS  PubMed  Google Scholar 

  71. Holliday, E. G. et al. Genome-wide association study identifies two novel genomic regions in irritable bowel syndrome. Am. J. Gastroenterol. 109, 770–772 (2014).

    Article  CAS  PubMed  Google Scholar 

  72. Bonfiglio, F. et al. A GWAS meta-analysis from 5 population-based cohorts implicates ion channel genes in the pathogenesis of irritable bowel syndrome. Neurogastroenterol. Motil. 30, e13358 (2018).

    Article  CAS  PubMed  Google Scholar 

  73. Bonfiglio, F. et al. Female-specific association between variants on chromosome 9 and self-reported diagnosis of irritable bowel syndrome. Gastroenterology 155, 168–179 (2018).

    Article  CAS  PubMed  Google Scholar 

  74. Day, F. R. et al. Genomic analyses identify hundreds of variants associated with age at menarche and support a role for puberty timing in cancer risk. Nat. Genet. 49, 834–841 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Elks, C. E. et al. Thirty new loci for age at menarche identified by a meta-analysis of genome-wide association studies. Nat. Genet. 42, 1077–1085 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Heitkemper, M., Jarrett, M., Bond, E. F. & Chang, L. Impact of sex and gender on irritable bowel syndrome. Biol. Res. Nurs. 5, 56–65 (2003).

    Article  PubMed  Google Scholar 

  77. Kim, Y. S. & Kim, N. Sex-gender differences in irritable bowel syndrome. J. Neurogastroenterol. Motil. 24, 544–558 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  78. Whitehead, W. E. et al. Evidence for exacerbation of irritable bowel syndrome during menses. Gastroenterology 98, 1485–1489 (1990).

    Article  CAS  PubMed  Google Scholar 

  79. Norcliffe-Kaufmann, L., Slaugenhaupt, S. A. & Kaufmann, H. Familial dysautonomia: history, genotype, phenotype and translational research. Prog. Neurobiol. 152, 131–148 (2017).

    Article  PubMed  Google Scholar 

  80. Camilleri, M. Gastrointestinal motility disorders in neurologic disease. J. Clin. Invest. 131, 143771 (2021).

    Article  PubMed  Google Scholar 

  81. Tillisch, K. et al. Sex specific alterations in autonomic function among patients with irritable bowel syndrome. Gut 54, 1396–1401 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Viramontes, B. E. et al. Gender-related differences in slowing colonic transit by a 5-HT3 antagonist in subjects with diarrhea-predominant irritable bowel syndrome. Am. J. Gastroenterol. 96, 2671–2676 (2001).

    Article  CAS  PubMed  Google Scholar 

  83. Hogan, A. M., Collins, D., Baird, A. W. & Winter, D. C. Estrogen and its role in gastrointestinal health and disease. Int. J. Colorectal Dis. 24, 1367–1375 (2009).

    Article  PubMed  Google Scholar 

  84. Taché, Y. & Bonaz, B. Corticotropin-releasing factor receptors and stress-related alterations of gut motor function. J. Clin. Invest. 117, 33–40 (2007).

    Article  PubMed  PubMed Central  Google Scholar 

  85. Bernstein, M. T. et al. Gastrointestinal symptoms before and during menses in healthy women. BMC Women’s Health 14, 14 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  86. Meleine, M. & Matricon, J. Gender-related differences in irritable bowel syndrome: potential mechanisms of sex hormones. World J. Gastroenterol. 20, 6725–6743 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  87. Houghton, L. A., Lea, R., Jackson, N. & Whorwell, P. J. The menstrual cycle affects rectal sensitivity in patients with irritable bowel syndrome but not healthy volunteers. Gut 50, 471–474 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Wu, Y. et al. GWAS of peptic ulcer disease implicates Helicobacter pylori infection, other gastrointestinal disorders and depression. Nat. Commun. 12, 1146 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Boutwell, B. et al. Replication and characterization of CADM2 and MSRA genes on human behavior. Heliyon 3, e00349 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  90. Pasman, J. A. et al. GWAS of lifetime cannabis use reveals new risk loci, genetic overlap with psychiatric traits, and a causal influence of schizophrenia. Nat. Neurosci. 21, 1161–1170 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Frei, J. A., Andermatt, I., Gesemann, M. & Stoeckli, E. T. The SynCAM synaptic cell adhesion molecules are involved in sensory axon pathfinding by regulating axon-axon contacts. J. Cell. Sci. 127, 5288–5302 (2014).

    PubMed  Google Scholar 

  92. Ibrahim-Verbaas, C. A. et al. GWAS for executive function and processing speed suggests involvement of the CADM2 gene. Mol. Psychiatry 21, 189–197 (2016).

    Article  CAS  PubMed  Google Scholar 

  93. Petrovska, J. et al. The NCAM1 gene set is linked to depressive symptoms and their brain structural correlates in healthy individuals. J. Psychiatr. Res. 91, 116–123 (2017).

    Article  PubMed  Google Scholar 

  94. Schmid, R. S. & Maness, P. F. L1 and NCAM adhesion molecules as signaling coreceptors in neuronal migration and process outgrowth. Curr. Opin. Neurobiol. 18, 245–250 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Pappa, S. et al. PHF2 histone demethylase prevents DNA damage and genome instability by controlling cell cycle progression of neural progenitors. Proc. Natl Acad. Sci. USA 116, 19464–19473 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Shi, L. Dock protein family in brain development and neurological disease. Commun. Integr. Biol. 6, e26839 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  97. Detera-Wadleigh, S. D. et al. Sequence variation in DOCK9 and heterogeneity in bipolar disorder. Psychiatr. Genet. 17, 274–286 (2007).

    Article  PubMed  Google Scholar 

  98. Kuramoto, K., Negishi, M. & Katoh, H. Regulation of dendrite growth by the Cdc42 activator Zizimin1/Dock9 in hippocampal neurons. J. Neurosci. Res. 87, 1794–1805 (2009).

    Article  CAS  PubMed  Google Scholar 

  99. Nagel, M., Watanabe, K., Stringer, S., Posthuma, D. & van der Sluis, S. Item-level analyses reveal genetic heterogeneity in neuroticism. Nat. Commun. 9, 905 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  100. Iossifov, I. et al. The contribution of de novo coding mutations to autism spectrum disorder. Nature 515, 216–221 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Whitehead, W. E., Palsson, O. & Jones, K. R. Systematic review of the comorbidity of irritable bowel syndrome with other disorders: what are the causes and implications? Gastroenterology 122, 1140–1156 (2002).

    Article  PubMed  Google Scholar 

  102. Gottesman, I. I. & Gould, T. D. The endophenotype concept in psychiatry: etymology and strategic intentions. Am. J. Psychiatry 160, 636–645 (2003).

    Article  PubMed  Google Scholar 

  103. Visscher, P. M., Brown, M. A., McCarthy, M. I. & Yang, J. Five years of GWAS discovery. Am. J. Hum. Genet. 90, 7–24 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Camilleri, M. & Katzka, D. A. Irritable bowel syndrome: methods, mechanisms, and pathophysiology. Genetic epidemiology and pharmacogenetics in irritable bowel syndrome. Am. J. Physiol. Gastrointest. Liver Physiol. 302, G1075–G1084 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Camilleri, M. et al. Neuropeptide S receptor induces neuropeptide expression and associates with intermediate phenotypes of functional gastrointestinal disorders. Gastroenterology 138, 98–107.e4 (2010).

    Article  CAS  PubMed  Google Scholar 

  106. Wong, B. S. et al. A Klothoβ variant mediates protein stability and associates with colon transit in irritable bowel syndrome with diarrhea. Gastroenterology 140, 1934–1942 (2011).

    Article  CAS  PubMed  Google Scholar 

  107. D’Amato, M. et al. Neuropeptide s receptor 1 gene polymorphism is associated with susceptibility to inflammatory bowel disease. Gastroenterology 133, 808–817 (2007).

    Article  PubMed  Google Scholar 

  108. Camilleri, M. & Nurko, S. Bile acid diarrhea in adults and adolescents. Neurogastroenterol. Motil. 34, e14287 (2021).

    PubMed  Google Scholar 

  109. Henström, M. et al. NPSR1 polymorphisms influence recurrent abdominal pain in children: a population-based study. Neurogastroenterol. Motil. 26, 1417–1425 (2014).

    Article  PubMed  Google Scholar 

  110. Degen, L. P. & Phillips, S. F. How well does stool form reflect colonic transit? Gut 39, 109–113 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Zinsmeister, A. R., Burton, D. & Camilleri, M. Pharmacodynamic and clinical endpoints for functional colonic disorders: statistical considerations. Dig. Dis. Sci. 58, 509–518 (2013).

    CAS  PubMed  Google Scholar 

  112. Jankipersadsing, S. A. et al. A GWAS meta-analysis suggests roles for xenobiotic metabolism and ion channel activity in the biology of stool frequency. Gut 66, 756–758 (2017).

    Article  CAS  PubMed  Google Scholar 

  113. Bonfiglio, F. et al. GWAS of stool frequency provides insights into gastrointestinal motility and irritable bowel syndrome. Cell Genom. https://doi.org/10.1016/j.xgen.2021.100069 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  114. Smillie, C. S. et al. Intra- and inter-cellular rewiring of the human colon during ulcerative colitis. Cell 178, 714–730.e22 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Drokhlyansky, E. et al. The human and mouse enteric nervous system at single-cell resolution. Cell 182, 1606–1622.e23 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Browning, K. N. & Travagli, R. A. Central nervous system control of gastrointestinal motility and secretion and modulation of gastrointestinal functions. Compr. Physiol. 4, 1339–1368 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  117. Modarresi, F. et al. Inhibition of natural antisense transcripts in vivo results in gene-specific transcriptional upregulation. Nat. Biotechnol. 30, 453–459 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Hing, B. et al. A polymorphism associated with depressive disorders differentially regulates brain derived neurotrophic factor promoter IV activity. Biol. Psychiatry 71, 618–626 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Maisonpierre, P. C. et al. NT-3, BDNF, and NGF in the developing rat nervous system: parallel as well as reciprocal patterns of expression. Neuron 5, 501–509 (1990).

    Article  CAS  PubMed  Google Scholar 

  120. Di Carlo, P., Punzi, G. & Ursini, G. Brain-derived neurotrophic factor and schizophrenia. Psychiatr. Genet. 29, 200–210 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  121. Liu, S. Neurotrophic factors in enteric physiology and pathophysiology. Neurogastroenterol. Motil. 30, e13446 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  122. Grider, J. R., Piland, B. E., Gulick, M. A. & Qiao, L. Y. Brain-derived neurotrophic factor augments peristalsis by augmenting 5-HT and calcitonin gene-related peptide release. Gastroenterology 130, 771–780 (2006).

    Article  CAS  PubMed  Google Scholar 

  123. Chai, N.-L. et al. Effects of neurotrophins on gastrointestinal myoelectric activities of rats. World J. Gastroenterol. 9, 1874–1877 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Chen, F. et al. Brain-derived neurotrophic factor accelerates gut motility in slow-transit constipation. Acta Physiol. 212, 226–238 (2014).

    Article  CAS  Google Scholar 

  125. Coulie, B. et al. Recombinant human neurotrophic factors accelerate colonic transit and relieve constipation in humans. Gastroenterology 119, 41–50 (2000).

    Article  CAS  PubMed  Google Scholar 

  126. Taché, Y., Garrick, T. & Raybould, H. Central nervous system action of peptides to influence gastrointestinal motor function. Gastroenterology 98, 517–528 (1990).

    Article  PubMed  Google Scholar 

  127. Taché, Y., Kolve, E., Maeda-Hagiwara, M. & Kauffman, G. L. Central nervous system action of calcitonin to alter experimental gastric ulcers in rats. Gastroenterology 94, 145–150 (1988).

    Article  PubMed  Google Scholar 

  128. Fukudo, S., Nomura, T. & Hongo, M. Impact of corticotropin-releasing hormone on gastrointestinal motility and adrenocorticotropic hormone in normal controls and patients with irritable bowel syndrome. Gut 42, 845–849 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Stengel, A. & Taché, Y. Neuroendocrine control of the gut during stress: corticotropin-releasing factor signaling pathways in the spotlight. Annu. Rev. Physiol. 71, 219–239 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Kaji, I. et al. Free fatty acid receptor 3 activation suppresses neurogenic motility in rat proximal colon. Neurogastroenterol. Motil. 30, 13157 (2018).

    Article  Google Scholar 

  131. Nøhr, M. K. et al. GPR41/FFAR3 and GPR43/FFAR2 as cosensors for short-chain fatty acids in enteroendocrine cells vs FFAR3 in enteric neurons and FFAR2 in enteric leukocytes. Endocrinology 154, 3552–3564 (2013).

    Article  PubMed  Google Scholar 

  132. Soret, R. et al. Short-chain fatty acids regulate the enteric neurons and control gastrointestinal motility in rats. Gastroenterology 138, 1772–1782 (2010).

    Article  CAS  PubMed  Google Scholar 

  133. Sinha, T. et al. Analysis of 1135 gut metagenomes identifies sex-specific resistome profiles. Gut Microbes 10, 358–366 (2019).

    Article  CAS  PubMed  Google Scholar 

  134. Shastri, P., McCarville, J., Kalmokoff, M., Brooks, S. P. J. & Green-Johnson, J. M. Sex differences in gut fermentation and immune parameters in rats fed an oligofructose-supplemented diet. Biol. Sex. Differ. 6, 13 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  135. Pittayanon, R. et al. Gut microbiota in patients with irritable bowel syndrome–a systematic review. Gastroenterology 157, 97–108 (2019).

    Article  PubMed  Google Scholar 

  136. Agnello, M. et al. Gut microbiome composition and risk factors in a large cross-sectional IBS cohort. BMJ Open Gastroenterol. 7, e000345 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  137. Vich Vila, A. et al. Gut microbiota composition and functional changes in inflammatory bowel disease and irritable bowel syndrome. Sci. Transl Med. 10, eaap8914 (2018).

    Article  PubMed  Google Scholar 

  138. Botschuijver, S. et al. Intestinal fungal dysbiosis is associated with visceral hypersensitivity in patients with irritable bowel syndrome and rats. Gastroenterology 153, 1026–1039 (2017).

    Article  PubMed  Google Scholar 

  139. Mihindukulasuriya, K. A. et al. Multi-omics analyses show disease, diet, and transcriptome interactions with the virome. Gastroenterology 161, 1194–1207.e8 (2021).

    Article  CAS  PubMed  Google Scholar 

  140. Hadizadeh, F. et al. Stool frequency is associated with gut microbiota composition. Gut 66, 559–560 (2017).

    Article  PubMed  Google Scholar 

  141. Tigchelaar, E. F. et al. Gut microbiota composition associated with stool consistency. Gut 65, 540–542 (2016).

    Article  CAS  PubMed  Google Scholar 

  142. Zhernakova, A. et al. Population-based metagenomics analysis reveals markers for gut microbiome composition and diversity. Science 352, 565–569 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Sanna, S. et al. Causal relationships among the gut microbiome, short-chain fatty acids and metabolic diseases. Nat. Genet. 51, 600–605 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Rothschild, D. et al. Environment dominates over host genetics in shaping human gut microbiota. Nature 555, 210–215 (2018).

    Article  CAS  PubMed  Google Scholar 

  145. Gacesa, R. et al. Environmental factors shaping the gut microbiome in a Dutch population. Nature 604, 732–739 (2022).

    Article  CAS  PubMed  Google Scholar 

  146. Sanna, S., Kurilshikov, A., van der Graaf, A., Fu, J. & Zhernakova, A. Challenges and future directions for studying effects of host genetics on the gut microbiome. Nat. Genet. 54, 100–106 (2022).

    Article  CAS  PubMed  Google Scholar 

  147. Kurilshikov, A. et al. Large-scale association analyses identify host factors influencing human gut microbiome composition. Nat. Genet. 53, 156–165 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  148. Hughes, D. A. et al. Genome-wide associations of human gut microbiome variation and implications for causal inference analyses. Nat. Microbiol. 5, 1079–1087 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  149. Rühlemann, M. C. et al. Genome-wide association study in 8,956 German individuals identifies influence of ABO histo-blood groups on gut microbiome. Nat. Genet. 53, 147–155 (2021).

    Article  PubMed  Google Scholar 

  150. Lopera-Maya, E. A. et al. Effect of host genetics on the gut microbiome in 7,738 participants of the Dutch Microbiome Project. Nat. Genet. 54, 143–151 (2022).

    Article  CAS  PubMed  Google Scholar 

  151. Qin, Y. et al. Combined effects of host genetics and diet on human gut microbiota and incident disease in a single population cohort. Nat. Genet. 54, 134–142 (2022).

    Article  CAS  PubMed  Google Scholar 

  152. Goodrich, J. K. et al. Genetic determinants of the gut microbiome in UK twins. Cell Host Microbe 19, 731–743 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  153. Turpin, W. et al. Association of host genome with intestinal microbial composition in a large healthy cohort. Nat. Genet. 48, 1413–1417 (2016).

    Article  CAS  PubMed  Google Scholar 

  154. Watanabe, K. et al. A global overview of pleiotropy and genetic architecture in complex traits. Nat. Genet. 51, 1339–1348 (2019).

    Article  CAS  PubMed  Google Scholar 

  155. Olds, L. C. & Sibley, E. Lactase persistence DNA variant enhances lactase promoter activity in vitro: functional role as a cis regulatory element. Hum. Mol. Genet. 12, 2333–2340 (2003).

    Article  CAS  PubMed  Google Scholar 

  156. Morales, E. et al. The European lactase persistence genotype determines the lactase persistence state and correlates with gastrointestinal symptoms in the Hispanic and Amerindian Chilean population: a case–control and population-based study. BMJ Open 1, e000125 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  157. Brandao Gois, M. F. et al. Role of the gut microbiome in mediating lactose intolerance symptoms. Gut 71, 215–217 (2022).

    Article  CAS  PubMed  Google Scholar 

  158. Poole, A. C. et al. Human salivary amylase gene copy number impacts oral and gut microbiomes. Cell Host Microbe 25, 553–564.e7 (2019).

    Article  CAS  PubMed  Google Scholar 

  159. Zhou, W. et al. Global Biobank Meta-analysis Initiative: powering genetic discovery across human diseases. Preprint at medRxiv https://doi.org/10.1101/2021.11.19.21266436 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  160. Camilleri, M. & Chedid, V. Actionable biomarkers: the key to resolving disorders of gastrointestinal function. Gut 69, 1730–1737 (2020).

    Article  CAS  PubMed  Google Scholar 

  161. Scholtens, S. et al. Cohort Profile: LifeLines, a three-generation cohort study and biobank. Int. J. Epidemiol. 44, 1172–1180 (2015).

    Article  PubMed  Google Scholar 

  162. Polygenic Risk Score Task Force of the International Common Disease Alliance. Responsible use of polygenic risk scores in the clinic: potential benefits, risks and gaps. Nat. Med. 27, 1876–1884 (2021).

    Article  CAS  Google Scholar 

  163. Sirugo, G., Williams, S. M. & Tishkoff, S. A. The missing diversity in human genetic studies. Cell 177, 26–31 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  164. DeBoever, C. et al. Assessing digital phenotyping to enhance genetic studies of human diseases. Am. J. Hum. Genet. 106, 611–622 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  165. Biomarkers Definitions Working Group. Biomarkers and surrogate endpoints: preferred definitions and conceptual framework. Clin. Pharmacol. Ther. 69, 89–95 (2001).

    Article  Google Scholar 

  166. Kawahara, H., Minami, R. & Yokota, N. BAG6/BAT3: emerging roles in quality control for nascent polypeptides. J. Biochem. 153, 147–160 (2013).

    Article  CAS  PubMed  Google Scholar 

  167. Binici, J. & Koch, J. BAG-6, a jack of all trades in health and disease. Cell. Mol. Life Sci. 71, 1829–1837 (2014).

    Article  CAS  PubMed  Google Scholar 

  168. Cheishvili, D. et al. IKAP/Elp1 involvement in cytoskeleton regulation and implication for familial dysautonomia. Hum. Mol. Genet. 20, 1585–1594 (2011).

    Article  CAS  PubMed  Google Scholar 

  169. Jackson, M. Z., Gruner, K. A., Qin, C. & Tourtellotte, W. G. A neuron autonomous role for the familial dysautonomia gene ELP1 in sympathetic and sensory target tissue innervation. Development 141, 2452–2461 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  170. Malumbres, M. et al. Cyclin-dependent kinases: a family portrait. Nat. Cell Biol. 11, 1275–1276 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  171. Cole, A. R. PCTK proteins: the forgotten brain kinases? Neurosignals 17, 288–297 (2009).

    Article  CAS  PubMed  Google Scholar 

  172. Vieira, N., Rito, T., Correia-Neves, M. & Sousa, N. Sorting out sorting nexins functions in the nervous system in health and disease. Mol. Neurobiol. 58, 4070–4106 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  173. Jin, Q. et al. Novel function of FAXDC2 in megakaryopoiesis. Blood Cancer J. 6, e478 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  174. Rooman, I. et al. Expression of the Notch signaling pathway and effect on exocrine cell proliferation in adult rat pancreas. Am. J. Pathol. 169, 1206–1214 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  175. Kadur Lakshminarasimha Murthy, P. et al. Radical and lunatic fringes modulate notch ligands to support mammalian intestinal homeostasis. eLife 7, e35710 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  176. Katoh, M. & Katoh, M. Notch signaling in gastrointestinal tract (review). Int. J. Oncol. 30, 247–251 (2007).

    CAS  PubMed  Google Scholar 

  177. Ratanasirintrawoot, S. & Israsena, N. Stem cells in the intestine: possible roles in pathogenesis of irritable bowel syndrome. J. Neurogastroenterol. Motil. 22, 367–382 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  178. W, C. et al. SCF-FBXO24 regulates cell proliferation by mediating ubiquitination and degradation of PRMT6. Biochem. Biophys. Res. Commun. 530, 75–81 (2020).

    Article  Google Scholar 

  179. Moore, S. W. & Johnson, G. Acetylcholinesterase in Hirschsprung’s disease. Pediatr. Surg. Int. 21, 255–263 (2005).

    Article  CAS  PubMed  Google Scholar 

  180. Soreq, H. & Seidman, S. Acetylcholinesterase–new roles for an old actor. Nat. Rev. Neurosci. 2, 294–302 (2001).

    Article  CAS  PubMed  Google Scholar 

  181. Demir, I. E., Schäfer, K.-H., Tieftrunk, E., Friess, H. & Ceyhan, G. O. Neural plasticity in the gastrointestinal tract: chronic inflammation, neurotrophic signals, and hypersensitivity. Acta Neuropathol. 125, 491–509 (2013).

    Article  CAS  PubMed  Google Scholar 

  182. Kano, M. et al. Altered brain and gut responses to corticotropin-releasing hormone (CRH) in patients with irritable bowel syndrome. Sci. Rep. 7, 12425 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  183. Sagami, Y. et al. Effect of a corticotropin releasing hormone receptor antagonist on colonic sensory and motor function in patients with irritable bowel syndrome. Gut 53, 958–964 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  184. Taché, Y. & Million, M. Role of corticotropin-releasing factor signaling in stress-related alterations of colonic motility and hyperalgesia. J. Neurogastroenterol. Motil. 21, 8–24 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  185. Samuel, B. S. et al. Effects of the gut microbiota on host adiposity are modulated by the short-chain fatty-acid binding G protein-coupled receptor, Gpr41. Proc. Natl Acad. Sci. USA 105, 16767–16772 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  186. Tazoe, H. et al. Expression of short-chain fatty acid receptor GPR41 in the human colon. Biomed. Res. 30, 149–156 (2009).

    Article  CAS  PubMed  Google Scholar 

  187. Gee, H. Y., Tang, B. L., Kim, K. H. & Lee, M. G. Syntaxin 16 binds to cystic fibrosis transmembrane conductance regulator and regulates its membrane trafficking in epithelial cells. J. Biol. Chem. 285, 35519–35527 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  188. Tang, B. L. Syntaxin 16’s newly deciphered roles in autophagy. Cells 8, E1655 (2019).

    Article  PubMed  Google Scholar 

  189. Longstreth, G. F. et al. Functional bowel disorders. Gastroenterology 130, 1480–1491 (2006).

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

The research time of M.C. for IBS studies is funded by NIH RO1 DK115950. A.Z. is supported by ERC Starting Grant 715772, Netherlands Organization for Scientific Research NWO-VIDI grant 016.178.056, Netherlands Heart Foundation CVON grant 2018-27, and NWO Gravitation grant ExposomeNL 024.004.017. The research of M.D’A. in IBS is supported by the Spanish Ministry of Science and Innovation (MICINN, PID2020-113625RB) and the Spanish Agency for Investigation (AEI, PCI2021-122064-2A) under the umbrella of the European Joint Programming Initiative “A Healthy Diet for a Healthy Life” (JPI HDHL) and of the ERA-NET Cofund ERA-HDHL (GA no. 696295 of the EU Horizon 2020 Research and Innovation Programme).

Author information

Authors and Affiliations

Authors

Contributions

All authors researched data for the article. All authors contributed substantially to discussion of the content. M.D’A., M.C. and A.Z. wrote the article. All authors reviewed and/or edited the manuscript before submission.

Corresponding author

Correspondence to Mauro D’Amato.

Ethics declarations

Competing interests

M.C. has received funding for single-centre pharmacodynamic studies from VANDA Pharmaceuticals and NGM Pharmaceuticals. M.D’A. has received financial support from QOL Medical, in the form of unrestricted research grants. A.Z. and I.B. declare no competing interests.

Peer review

Peer review information

Nature Reviews Gastroenterology & Hepatology thanks Hans Tornblom and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Related links

GWAS Catalog: https://www.ebi.ac.uk/gwas/

International Classification of Diseases, Ninth Revision (ICD9): https://www.cdc.gov/nchs/icd/icd9.htm

International Classification of Diseases, Tenth Revision (ICD10): https://www.cdc.gov/nchs/icd/icd10.htm

National Institute for Health and Care Excellence: https://www.nice.org.uk/guidance/cg61

Rome criteria: https://theromefoundation.org/rome-iv/rome-iv-criteria/

Glossary

Dysbiosis

Disruption of the intestinal microbiota homeostasis, determining a reduction in microbial diversity, alterations in the composition and distribution of the autochthon commensals, and changes in metabolic activities.

Genetic architecture

Broadly, the genetic landscape that underlies a phenotypic trait and its variation, characterized by the number of genetic variants that contribute to that phenotype, their effect size and the patterns of interactions. It summarizes the ‘genetics’ behind a trait.

Biobanks

Collections of extensive data from biomedical research linked to study participants, including biospecimens, electronic health-related records, genetic data, imaging, biomarkers and information regarding environment and lifestyle.

Prevalence

The proportion of individuals in a population who have a specific characteristic (typically a disease) at a specific time.

GWAS Catalog

A free online curated collection of human genome-wide association study (GWAS) results representing a collaboration between the European Bioinformatics Institute of the European Molecular Biology Laboratory and the National Human Genome Research Institute; it summarizes significant single-nucleotide polymorphism–trait associations, and sample metadata from each publication (as of 9 July 2022, the catalogue contains 5,848 publications and 398,342 associations).

Polygenic scores

(PGS). Values summarizing the estimated (cumulative) effects of multiple DNA variants in determining the probability of an individual manifesting specific phenotypes or traits. The score is useful for evaluating an individual’s genetic predisposition for a particular trait and can also be used as a predictor relative to the general population (increased or decreased risk of disease, expressed as a polygenic risk score for that disease).

Biomarkers

Characteristics that can be objectively measured and evaluated as indicators of normal biological processes, pathogenic processes or pharmacological responses to a therapeutic intervention (adapted from the definition of the Biomarkers Definitions Working Group).

Omics

A set of scientific disciplines (such as genomics, metagenomics, metabolomics, proteomics and transcriptomics) that exploit large-scale data to characterize and quantify molecular interactions at a global level, whether biochemical, molecular or cellular data, or data from organs or other systems.

Genome-wide significance level

The consensus threshold defining the statistical significance of a reported genome-wide association between a single-nucleotide polymorphism and a given trait. Currently defined as P < 5 × 10−8 (originally based on a Bonferroni correction).

Gene set enrichment analysis

A computational method that, based on existing knowledge, allows the identification of biological pathways, functions and/or disease-related categories that are significantly (P < 0.05) enriched in a specific set of genes compared with a reference panel (most often the whole transcriptome).

Suggestive association

A threshold that, although not reaching genome-wide significance, could be used as evidence of association warranting further investigation and validation in independent datasets (often set at P ≤ 5 × 10−6).

Minor allele

The less common allele for a specific single-nucleotide polymorphism in a given population.

Locus

The specific location of a DNA sequence, gene or genetic marker on a chromosome.

Genetic correlations

Parameters that quantify the proportion of variance that two traits share owing to genetic causes, estimating the degree of pleiotropy (the phenomenon by which a single gene or locus influences the phenotypic appearance of multiple traits, including different diseases) or causal overlap.

Mendelian randomization

An analytical method that uses random segregation of genetic variants as an instrument to emulate a randomized controlled trial, to investigate the putative causal effect of an exposure (using genetic variations strongly associated with it) on an outcome of interest, allowing confounders and reverse causation to be reduced; it can be used to test whether genetic predisposition to a disease (outcome) is mediated via DNA variants (instruments) predisposing to another disease (exposure), and vice versa.

Primary and secondary ICD10 diagnoses

According to the ICD-10-CM Official Guidelines for Coding and Reporting, FY 2021, the principal diagnosis is defined as the condition established to be chiefly responsible for occasioning the admission of the patient to the hospital, whereas other diagnoses are all conditions that coexist at the time of admission, develop subsequently, or affect the treatment received and/or the length of stay.

Linkage disequilibrium

In a given population, the non-random segregation of alleles from different loci, resulting in their combinations (haplotypes) occurring more or less often than expected based merely on their individual allele frequencies (random, independent segregation).

Lead SNP

The marker that gives rise to the strongest association signal at a given genome-wide association study locus.

SNP heritability

The proportion of phenotypic variance of a given trait, which is causally explained by a specific set of single-nucleotide polymorphisms (SNPs).

Functional annotation

The process of collecting and assigning functional information to genomic regions, such as genome-wide association study loci (including gene content, regulatory elements, expression, molecular function, subcellular location, interactions, etc).

Major allele

The more common allele for a specific single-nucleotide polymorphism in a given population.

Promoter

A regulatory element; a sequence of DNA that allows the binding of RNA polymerase and transcription factors responsible for the transcription of the downstream gene, therefore fundamentally contributing to its expression.

Alternative splicing

The post-transcriptional process resulting in different combinations of exons from the same precursor mRNA producing alternative mRNA transcripts; this allows a single gene to code for multiple proteins, often associated with developmental and tissue-specific expression.

Post-translational modifications

All the chemical modifications that take place after the translation of a polypeptide chain (such as the addition of functional groups and/or polypeptides, proteolytic cleavage, glycosylation and phosphorylation), expanding the diversity in structures and functions of proteins.

Exposome

The totality of environmental factors an individual is exposed to over a lifetime, usually considered in relation to health measures.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Camilleri, M., Zhernakova, A., Bozzarelli, I. et al. Genetics of irritable bowel syndrome: shifting gear via biobank-scale studies. Nat Rev Gastroenterol Hepatol 19, 689–702 (2022). https://doi.org/10.1038/s41575-022-00662-2

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41575-022-00662-2

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing