Skip to main content
Log in

Impacts of basin-wide irrigation pumping on dry-period stream baseflow in an alluvial aquifer in the Kosi Fan region of India and Nepal

Impacts des pompages d’irrigation à l’échelle du bassin sur le débit de base des cours d’eau en période sèche dans un aquifère alluvial de la région de Kosi Fan en Inde et au Népal

Impactos del riego por bombeo en una cuenca sobre el flujo de base en un acuífero aluvial en la región del Abanico Kosi en India y Nepal

印度和尼泊尔 Kosi Fan 地区冲积含水层中全流域灌溉开采对干旱期河流基流的影响

Impactos do bombeamento para irrigação em toda bacia no fluxo de base do período seco em aquífero aluvial na região do leque de Kosi na Índia e Nepal

  • Report
  • Published:
Hydrogeology Journal Aims and scope Submit manuscript

Abstract

The Kosi Fan region of India and Nepal hosts a productive aquifer system. Regional hydrology is highly seasonal, and both groundwater and surface water are used for irrigation. Groundwater depletion is not currently occurring, but there is concern that plans to increase groundwater irrigation will reduce river baseflow, potentially affecting downstream water users. This study presents a model-based analysis of the impacts of groundwater withdrawal on dry-period streamflow and evaluation of management alternatives. A sensitivity analysis was performed in which a range of model parameters were tested around a best-estimate, base-case scenario. A high-reduction scenario was then developed which combined the factors that produced the greatest pumping-induced reduction in dry-season baseflow. Management strategies for 2.5, 5, and 10-km no-pumping buffers around the rivers were tested for the base-case and high-reduction scenarios. Simulations show that groundwater withdrawal equivalent to 30% and 60% of dry-season streamflow for the Kosi and Mahananda rivers, respectively, reduces the current dry-season flow by less than 4%. In the base-case scenario, simulated dry-season baseflow reduction is 1.8% and 2.6% for the rivers, respectively; these reduce to ~1% with a 2.5-km buffer zone. For the high-reduction scenario, dry-season baseflow reductions are 4.7% and 7.0% with no buffer; these reduce to 1.3% and 0.9% with a 5-km buffer for the Kosi and Mahananda rivers, respectively. The small reductions in baseflow relative to the total amount of pumping are due to a pumping-induced increase in rainfall recharge, thus the effects of additional pumping are mitigated.

Résumé

La région de Kosi Fan en Inde et au Népal abrite un système aquifère productif. L’hydrologie régionale est très saisonnière, et les eaux souterraines et de surface sont utilisées pour l’irrigation. L’épuisement des eaux souterraines ne se produit pas actuellement, mais il y a des inquiétudes considérant les plans visant à augmenter l’irrigation par les eaux souterraines ne réduisent le débit de base des rivières, ce qui pourrait affecter les utilisateurs d’eau en aval. Cette étude présente une analyse basée sur un modèle des impacts des prélèvements des eaux souterraines sur le débit des cours d’eau en période sèche et une évaluation des alternatives de gestion. Une analyse de sensibilité a été réalisée dans laquelle une gamme de paramètres du modèle a été testée autour d’une meilleure estimation, le scénario de base. Un scénario de forte réduction a ensuite été élaboré, réunissant les facteurs qui ont produit la plus forte réduction du débit de base en saison sèche induite par le pompage. Des stratégies de gestion pour des zones tampons sans pompage de 2.5, 5 et 10 km autour des rivières ont été testées pour les scénarios de base et de forte réduction. Les simulations montrent qu’un prélèvement d’eau souterraine équivalent à 30–60% du débit des cours d’eau en saison sèche pour les rivières Kosi et Mahananda, respectivement, réduit le débit actuel de saison sèche de moins de 4%. Dans le scénario de base, la réduction simulée du débit de base de saison sèche est de 1.8 et de 2.6% pour les rivières, respectivement; ces chiffres se réduisent à ~1% avec une zone tampon de 2.5 km. Pour le scénario de forte réduction, les réductions du débit de base en saison sèche sont de 4.7 et 7.0% sans zone tampon; elles se réduisent à 1.3 et 0.9% avec une zone tampon de 5 km pour les rivières Kosi et Mahananda, respectivement. Les faibles réductions du débit de base par rapport au volume total pompé sont dues à une augmentation de la recharge par les précipitations induite par le pompage, ce qui atténue les effets du pompage supplémentaire.

Resumen

La región del abanico del Kosi, en India y Nepal, alberga un productivo sistema acuífero. La hidrología regional es fuertemente estacional, y tanto las aguas subterráneas como las superficiales se utilizan para el riego. En la actualidad no se está produciendo un agotamiento de las aguas subterráneas, pero preocupa que los planes para aumentar el riego con aguas subterráneas reduzcan el caudal base del río, lo que podría afectar a los usuarios de aguas abajo. Este estudio presenta un análisis basado en un modelo de los impactos de la extracción de agua subterránea en el caudal del río en el período seco y la evaluación de las alternativas de gestión. Se llevó a cabo un análisis de sensibilidad en el que se probó una serie de parámetros del modelo en torno a un escenario base de mejor estimación. A continuación, se desarrolló un escenario de alta reducción que combinaba los factores que producían la mayor reducción inducida por el bombeo en el caudal base de la estación seca. Se probaron las estrategias de gestión de las zonas de seguridad sin bombeo de 2.5, 5 y 10 km alrededor de los ríos para los escenarios de base y de alta reducción. Las simulaciones muestran que la extracción de agua subterránea equivalente al 30–60% del caudal de la estación seca para los ríos Kosi y Mahananda, respectivamente, reduce el caudal actual de la estación seca en menos del 4%. En el escenario de base, la reducción simulada del caudal base de la estación seca es del 1.8% y del 2.6% para los ríos, respectivamente; estos se reducen a un ~1% con una zona de protección de 2.5 km. Para el escenario de alta reducción, las reducciones del caudal base en la estación seca son del 4.7% y del 7.0% sin zona de seguridad; éstas se reducen al 1.3% y al 0.9% con una zona de seguridad de 5 km para los ríos Kosi y Mahananda, respectivamente. Las pequeñas reducciones del caudal base en relación con la cantidad total de bombeo se deben a un aumento de la recarga de las precipitaciones inducido por el bombeo, con lo que se mitigan los efectos del bombeo adicional.

摘要

印度和尼泊尔的 Kosi Fan 地区拥有富水的含水层系统。区域水文具有很强的季节性,地下水和地表水都用于灌溉。目前没有发生地下水枯竭,但人们担心增加地下水灌溉的计划将减少河流基流量,从而可能影响下游用水户。本研究基于模型分析地下水开采对干旱期径流的影响以及管理备选方案的评估。开展了敏感性分析,其中围绕最佳估计、基准情景测试了一系列模型参数。然后开发了一个高减量情景,该情景结合了产生最大抽水引起的旱季基流减少的因素。针对基准情景和高减量情景测试了河流周围 2.5 公里、5 公里和 10 公里无开采缓冲区的管理策略。模拟表明,分别相当于 Kosi 和 Mahananda 河旱季流量的 30–60% 的地下水开采量将当前旱季流量减少了不到 4%。在基准情景中,模拟的河流旱季基流量减少分别为 1.8 和 2.6%;在 2.5 公里的缓冲区中,这些减少到约 1%。对于高减量情景,没有缓冲区,旱季基流量减少 4.7 和 7.0%;在 Kosi 和 Mahananda 河 5 公里的缓冲区分别减少到 1.3 和 0.9%。相对于开采总量,基流的小幅减少是由于开采引起的降雨补给增加,因此增加开采的影响得到了缓解。

Resumo

A região do Leeque de Kosi na Índia e Nepal abriga um produtivo sistema aquífero. A hidrologia regional é altamente sazonal, e ambas águas subterrâneas e superficiais são utilizadas para irrigação. A depleção da água subterrânea não está ocorrendo atualmente, mas há uma preocupação de que os planos para aumentar a irrigação por águas subterrâneas vão reduzir o fluxo de base dos rios, potencialmente afetando o uso da água a jusante. Este estudo apresenta uma análise baseada em modelos de impacto da captação da água subterrânea no fluxo dos rios durante o período seco e de avaliação das alternativas de gerenciamento. A análise de sensibilidade foi feita de maneira que uma variedade de parâmetros fosse testada em torno de um cenário base, de melhor estimativa. Um cenário de alta redução foi então desenvolvido combinando os fatores que promoveram a maior redução do fluxo de base induzido pelo bombeamento durante o período seco. Estratégias de gerenciamento foram testadas utilizando zonas de amortecimento de 2.5, 5, e 10-km para zonas de não bombeamento em torno dos rios tanto no cenário de base, quanto no cenário de alta redução. As simulações mostram que a captação de água subterrâneas equivalentes a 30–60% do fluxo de base no período seco para os rios Kosi e Mahananda, respectivamente, reduzem o fluxo de base atual em menos de 4%. No cenário de base, a redução do fluxo de base simulado para o período seco é de 1.8 e 2.6% para os rios, respectivamente; o que reduz para ~1% com uma zona de amortecimento de 2.5-km. Para o cenário de maior redução, a redução do fluxo de base no período seco é de 4.7 e 7.0% sem utilização da zona de amortecimento; o que reduz para 1.3 e 0.9% com uma zona de amortecimento de 5-km para os rios Kosi e Mahananda, respectivamente. As pequenas reduções no fluxo de base relativas as quantidades totais de bombeamento são devido a recarga pela precipitação induzida pelo bombeamento, portanto os efeitos de captações adicionais são mitigados.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Adel MM (2013) Farakka Barrage, the greatest ever riparian bluff for upstream water piracy. Acad J Environ Sci 1:36–52

    Google Scholar 

  • Aeschbach-Hertig W, Gleeson T (2012) Regional strategies for the accelerating global problem of groundwater depletion. Nat Geosci 5:853–861. https://doi.org/10.1038/ngeo1617

    Article  Google Scholar 

  • Arfanuzzaman M, Abu Syed M (2018) Water demand and ecosystem nexus in the transboundary river basin: a zero-sum game. Environ Dev Sustain 20:963–974. https://doi.org/10.1007/s10668-017-9915-y

    Article  Google Scholar 

  • Barlow PM, Leake SA (2012) Streamflow depletion by wells—understanding and managing the effects of groundwater pumping on streamflow. US Geol Surv Circ 1376:84

    Google Scholar 

  • Barlow PM, Ahlfeld DP, Dickerman DC (2003) Conjunctive-management models for sustained yield of stream–aquifer systems. J Water Resour Plan Manag 129:35–48. https://doi.org/10.1061/(ASCE)0733-9496(2003)129:1(35)

    Article  Google Scholar 

  • Bonsor HC, MacDonald AM, Ahmed KM, Burgess WG, Basharat M, Calow RC, Dixit A, Foster SSD, Gopal K, Lapworth DJ, Moench M, Mukherjee A, Rao MS, Shamsudduha M, Smith L, Taylor RG, Tucker J, van Steenbergen F, Yadav SK, Zahid A (2017) Hydrogeological typologies of the Indo-Gangetic basin alluvial aquifer, South Asia. Hydrogeol J 25:1377–1406. https://doi.org/10.1007/s10040-017-1550-z

    Article  Google Scholar 

  • Bredehoeft J (2011) Hydrologic trade-offs in conjunctive use management. Ground Water 49:468–475

    Article  Google Scholar 

  • CGWB (2013a) Ground water information booklet Saharsa District. Bihar State Central Ground Water Board, Ministry of Water Resources (Govt. of India) Mid-Eastern Region Patna. http://cgwbgovin/District_Profile/Bihar/Saharsapdf. Accessed 20 Feb 2022

  • CGWB (2013b) Ground water information booklet Madhepura District. Bihar State Central Ground Water Board, Ministry of Water Resources (Govt. of India) Mid-Eastern Region Patna. http://cgwbgovin/District_Profile/Bihar/Madhepurapdf. Accessed 20 Feb 2022

  • CGWB (2013c) Ground water information booklet Supaul District, Bihar state. Central Ground Water board, Ministry of Water Resources (Govt. of India) Mid-Eastern region Patna. http://cgwb.gov.in/District_Profile/Bihar/Supaul.pdf. Accessed 20 Feb 2022

  • CGWB (2013d) Ground water information booklet Araria District. Bihar State Central Ground Water Board, Ministry of Water Resources (Govt. of India) Mid-Eastern Region Patna. http://cgwbgovin/District_Profile/Bihar/Arariapdf. Accessed 20 Feb 2022

  • CGWB (2013e) Ground water information booklet Purnea District. Bihar State Central Ground Water Board, Ministry of Water Resources (Govt. of India) Mid-Eastern Region Patna. http://cgwbgovin/District_Profile/Bihar/Purneapdf. Accessed 20 Feb 2022

  • Chakraborty T, Ghosh P (2010) The geomorphology and sedimentology of the Tista megafan, Darjeeling Himalaya: implications for megafan building processes. Geomorphology 115(3–4):252–266

    Article  Google Scholar 

  • Chakraborty T, Kar R, Ghosh P, Basu S (2010) Kosi megafan: historical records, geomorphology and the recent avulsion of the Kosi River. Quat Int 227:143–160. https://doi.org/10.1016/j.quaint.2009.12.002

    Article  Google Scholar 

  • Changming L, Jingjie Y, Kendy E (2001) Groundwater exploitation and its impact on the environment in the North China plain. Water Int 26:265–272. https://doi.org/10.1080/02508060108686913

    Article  Google Scholar 

  • Choudhury E, Islam S (2015) Nature of transboundary water conflicts: issues of complexity and the enabling conditions for negotiated cooperation. J Contemp Water Res Educ 155:43–52. https://doi.org/10.1111/j.1936-704X.2015.03194.x

    Article  Google Scholar 

  • Department of Agriculture (2016) Enhancing agricultural productivity and competitiveness Bihar Kosi Basin development project. Project Implementation Plan submitted to the World Bank, Govt. of Bihar, Patna, India

  • Dinar A (2005) Conjunctive use of groundwater and surface water. In: Abdel-Dayem S, Darghouth S, Diemer G et al (eds) Shaping the future of water for agriculture: a sourcebook for investment in agricultural water management. World Bank, Washington, DC, 356 pp

    Google Scholar 

  • Espey M, Towfique B (2004) International bilateral water treaty formation. Water Resour Res 40. https://doi.org/10.1029/2003WR002534

  • Fendorf S, Benner SG (2016) Indo-Gangetic groundwater threat. Nat Geosci 9:732–733. https://doi.org/10.1038/ngeo2804

    Article  Google Scholar 

  • Fischhendler I (2008) When ambiguity in treaty design becomes destructive: a study of transboundary water. Glob Environ Polit 8:111–136. https://doi.org/10.1162/glep.2008.8.1.111

    Article  Google Scholar 

  • Foster S, van Steenbergen F (2011) Conjunctive groundwater use: a ‘lost opportunity’ for water management in the developing world? Hydrogeol J 19:959–962. https://doi.org/10.1007/s10040-011-0734-1

    Article  Google Scholar 

  • Foster S, van Steenbergen F, Zuleta J, Garduño H (2010) Conjunctive use of groundwater and surface water from spontaneous coping strategy to adaptive resource management. In: GW-Mate, Strategic Overview Series no. 2. The World Bank, Washington, DC, 26 pp

  • Gandhi VP, Bhamoriya V (2011) Groundwater irrigation in India growth, challenges, and risks. In: India infrastructure report 2011 water: policy and performance for sustainable development. Oxford University Press, Oxfod, UK, pp 90–117

    Google Scholar 

  • Garduño H, Foster S, Nanni M, Kemper K, Tuinhof A, Koundouri P (2006) Groundwater dimensions of National Water Resource and River Basin Planning: promoting an integrated strategy. In: Sustainable groundwater managementy: concepts and tools. GW-MATE Brief Note Series 10, World Bank, Washington, DC, pp 1–10

  • Gohain K, Parkash B (1990) Morphology of the Kosi megafan. In: Rachocki AH, Church M (eds) Alluvial fans. Wiley, Chichester, UK, pp 151–178

    Google Scholar 

  • GoI (1997) Report of the ground water resource estimation committee: ground water resource estimation methodology. Ministry of Water Resources, Government of India, New Delhi

  • Harbaugh AW (2005) MODFLOW-2005, the US geological survey modular ground-water model-the ground-water flow process. US Geological Survey techniques and methods 6–A16, US Geological Survey, Reston, VA

  • Harvey CF, Ashfaque KN, Yu W, Badruzzaman ABM, Ali MA, Oates PM, Michael HA, Neumann RB, Beckie R, Islam S, Ahmed MF (2006) Groundwater dynamics and arsenic contamination in Bangladesh. Chem Geol 228:112–136. https://doi.org/10.1016/j.chemgeo.2005.11.025

    Article  Google Scholar 

  • Islam MR (1987) Ganges water dispute: its international legal aspects. University Press, Dhaka, Bangladesh

    Google Scholar 

  • Kazmi SI, Ertsen MW, Asi MR (2012) The impact of conjunctive use of canal and tube well water in Lagar irrigated area, Pakistan. Phys Chem Earth, Parts A/B/C 47–48:86–98. https://doi.org/10.1016/j.pce.2012.01.001

    Article  Google Scholar 

  • Khan MR, Voss CI, Yu W, Michael HA (2014) Water resources Management in the Ganges Basin: a comparison of three strategies for conjunctive use of groundwater and surface water. Water Resour Manag 28:1235–1250. https://doi.org/10.1007/s11269-014-0537-y

    Article  Google Scholar 

  • Kijne JW (2003) Alleviating the environmental impact of agricultural water development. In: Unlocking the water potential of agriculture. FAO, Rome, pp 41–45

    Google Scholar 

  • Kliot N (2001) Institutions for management of transboundary water resources: their nature, characteristics and shortcomings. Water Policy 3:229–255. https://doi.org/10.1016/S1366-7017(01)00008-3

    Article  Google Scholar 

  • Konikow LF, Kendy E (2005) Groundwater depletion: a global problem. Hydrogeol J 13:317–320. https://doi.org/10.1007/s10040-004-0411-8

    Article  Google Scholar 

  • Konikow LF, Leake SA (2014) Depletion and capture: revisiting “the source of water derived from wells”. Ground Water 52:100–111. https://doi.org/10.1111/gwat.12204

    Article  Google Scholar 

  • MacDonald AM, Bonsor HC, Taylor R, Shamsudduha M, Burgess WG, Ahmed KM, Mukherjee A, Zahid A, Lapworth D, Gopal K, Rao MS, Moench M, Bricker SH, Yadav SK, Satyal Y, Smith L, Dixit A, Bell R, van Steenbergen F, Basharat M, Gohar MS, Tucker J, Calow RC, Maurice L (2015) Groundwater resources in the Indo-Gangetic Basin: resilience to climate change and abstraction. British Geological Survey, Keyworth, UK

  • MacDonald AM, Bonsor HC, Ahmed KM, Burgess WG, Basharat M, Calow RC, Dixit A, Foster SSD, Gopal K, Lapworth DJ, Lark RM, Moench M, Mukherjee A, Rao MS, Shamsudduha M, Smith L, Taylor RG, Tucker J, van Steenbergen F, Yadav SK (2016) Groundwater quality and depletion in the Indo-Gangetic Basin mapped from in situ observations. Nat Geosci 9:762–766. https://doi.org/10.1038/ngeo2791

    Article  Google Scholar 

  • Michael HA, Voss CI (2009) Controls on groundwater flow in the Bengal Basin of India and Bangladesh: regional modeling analysis. Hydrogeol J 17:1561–1577

    Article  Google Scholar 

  • Mukherjee A, Bhanja SN, Wada Y (2018) Groundwater depletion causing reduction of baseflow triggering Ganges River summer drying. Sci Rep 8:1–9. https://doi.org/10.1038/s41598-018-30246-7

    Article  Google Scholar 

  • Munia H, Guillaume JHA, Mirumachi N, Porkka M, Wada Y, Kummu M (2016) Water stress in global transboundary river basins: significance of upstream water use on downstream stress. Environ Res Lett 11. https://doi.org/10.1088/1748-9326/11/1/014002

  • Munia HA, Guillaume JHA, Mirumachi N, Wada Y, Kummu M (2018) How downstream sub-basins depend on upstream inflows to avoid scarcity: typology and global analysis of transboundary rivers. Hydrol Earth Syst Sci 22:2795–2809. https://doi.org/10.5194/hess-22-2795-2018

    Article  Google Scholar 

  • Murray-Rust DH, Velde EJ (1994) Conjunctive use of canal and groundwater in Punjab, Pakistan: management and policy options. Irrig Drain Syst 8:201–231. https://doi.org/10.1007/BF00881558

    Article  Google Scholar 

  • Petheram C, Bristow KL, Nelson PN (2008) Understanding and managing groundwater and salinity in a tropical conjunctive water use irrigation district. Agric Water Manag 95:1167–1179. https://doi.org/10.1016/j.agwat.2008.04.016

    Article  Google Scholar 

  • Revelle R, Lakshminarayana V (1975) The Ganges water machine. Science 188:611–616. https://doi.org/10.1126/science.188.4188.611

    Article  Google Scholar 

  • Rodell M, Velicogna I, Famiglietti JS (2009) Satellite-based estimates of groundwater depletion in India. Nature 460:999–1002. https://doi.org/10.1038/nature08238

    Article  Google Scholar 

  • Rosegrant MW, Cai X, Cline SA (2002) World water and food to 2025: dealing with scarcity. International Food Policy Research Institute, Washington, DC

  • Savitzky A, Golay MJE (1964) Smoothing and differentiation of data by simplified least squares procedures. Anal Chem 36:1627–1639. https://doi.org/10.1021/ac60214a047

    Article  Google Scholar 

  • Shamsudduha M, Taylor RG, Ahmed KM, Zahid A (2011) The impact of intensive groundwater abstraction on recharge to a shallow regional aquifer system: evidence from Bangladesh. Hydrogeol J 19(4):901–916

    Article  Google Scholar 

  • Shi F, Zhao C, Sun D, Peng D, Han M (2012) Conjunctive use of surface and groundwater in Central Asia area: a case study of the Tailan River basin. Stoch Environ Res Risk Assess 26:961–970. https://doi.org/10.1007/s00477-011-0545-x

    Article  Google Scholar 

  • Singh A, Nath Panda S, Flugel W-A, Krause P (2012) Waterlogging and farmland salinisation: causes and remedial measures in an irrigated semi-arid region of India. Irrig Drain 61:357–365. https://doi.org/10.1002/ird.651

    Article  Google Scholar 

  • Tsur Y, Graham-Tomasi T (1991) The buffer value of groundwater with stochastic surface water supplies. J Environ Econ Manage 21:201–224. https://doi.org/10.1016/0095-0696(91)90027-G

    Article  Google Scholar 

  • USGS (2016) Shuttle Radar Topography Mission (SRTM) 1 Arc-Second Global. https://lta.cr.usgs.gov/SRTM1Arc. Accessed 14 Feb 2016

  • Winter TC, Harvey JW, Franke OL, Alley WM (1998) Ground water and surface water a single resource. US Geol Surv Circ 1139

  • Wolf AT (2007) Shared waters: conflict and cooperation. Annu Rev Environ Resour 32:241–269. https://doi.org/10.1146/annurev.energy.32.041006.101434

    Article  Google Scholar 

  • Wolf AT, Natharius JA, Danielson JJ, Ward BS, Pender JK (1999) International River basins of the world. Int J Water Resour Dev 15:387–427. https://doi.org/10.1080/07900629948682

    Article  Google Scholar 

  • Wolf AT, Yoffe SB, Giordano M (2003) International waters: identifying basins at risk. Water Policy 5:29–60. https://doi.org/10.2166/wp.2003.0002

    Article  Google Scholar 

  • World Bank (2010) Deep wells and prudence: towards pragmatic action for addressing groundwater overexploitation in India. World Bank, Washington, DC

Download references

Acknowledgements

The authors thank the two anonymous reviewers and the associate editor Stephan Schulz for their helpful suggestions that certainly improved the quality of the article.

Funding

The study was funded by the World Bank.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mahfuzur R. Khan.

Ethics declarations

Conflicts of Interest

The author declares no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

ESM 1

(PDF 580 kb)

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khan, M.R., Michael, H.A., Bresnyan, E.W. et al. Impacts of basin-wide irrigation pumping on dry-period stream baseflow in an alluvial aquifer in the Kosi Fan region of India and Nepal. Hydrogeol J 30, 1899–1910 (2022). https://doi.org/10.1007/s10040-022-02527-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10040-022-02527-z

Keywords

Navigation