Skip to main content

Advertisement

Log in

Combination effects of mesenchymal stem cells transplantation and anodal transcranial direct current stimulation on a cuprizone-induced mouse model of multiple sclerosis

  • Original Paper
  • Published:
Journal of Molecular Histology Aims and scope Submit manuscript

Abstract

Multiple sclerosis (MS) has no absolute treatment, and researchers are still exploring to introduce promising therapy for MS. Transcranial direct current stimulation (tDCS), is a safe, non-invasive procedure for brain stimulating which can enhance working memory, cognitive neurohabitation and motor recovery. Here, we evaluated the effects of tDCS treatment and Mesenchymal stem cells (MSCs) transplantation on remyelination ability of a Cuprizone (CPZ)-induced demyelination mouse model. tDCS significantly increased the motor coordination and balance abilities in CPZ + tDCS and CPZ + tDCS + MSCs mice in comparison to the CPZ mice. Luxol fast blue (LFB) staining showed that tDCS and MSCs transplantation could increase remyelination capacity in CPZ + tDCS and CPZ + MSCs mice compared to the CPZ mice. But, the effect of tDCS with MSCs transplantation on remyelination process was larger than each of treatment alone. Immunofluorescence technique indicated that the numbers of Olig2+ cells were increased by tDCS and MSCs transplantation in CPZ + tDCS and CPZ + MSCs mice compared to the CPZ mice. Interestingly, the combination effect of tDCS and MSCs was larger than each of treatment alone on Oligodendrocytes population. MSCs transplantation significantly decreased the TUNEL+ cells in CPZ + MSCs and CPZ + tDCS + MSCs mice in comparison to the CPZ mice. Also, the combination effects of tDCS and MSCs transplantation was much larger than each of treatment alone on increasing the mRNA expression of BDNF and Sox2, while decreasing P53 as compared to CPZ mice. It can be concluded that the combination usage of tDCS and MSCs transplantation enhance remyelination process in CPZ-treated mice by increasing transplanted stem cell homing, oligodendrocyte generation and decreasing apoptosis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

Data will be made available on reasonable request.

References

  • Ahn SM, Jung DH, Lee HJ, Pak ME, Jung YJ, Shin Y-I, Shin HK, Choi BT (2020) Contralesional application of transcranial direct current stimulation on functional improvement in ischemic stroke mice. Stroke 51:2208–2218

    CAS  PubMed  Google Scholar 

  • Baba T, Kameda M, Yasuhara T, Morimoto T, Kondo A, Shingo T, Tajiri N, Wang F, Miyoshi Y, Borlongan CV (2009) Electrical stimulation of the cerebral cortex exerts antiapoptotic, angiogenic, and anti-inflammatory effects in ischemic stroke rats through phosphoinositide 3-kinase/Akt signaling pathway. Stroke 40:e598–e605

    PubMed  Google Scholar 

  • Barati S, Kashani IR, Tahmasebi F, Mehrabi S, Joghataei MT (2019) Effect of mesenchymal stem cells on glial cells population in cuprizone induced demyelination model. Neuropeptides 75:75–84

    CAS  PubMed  Google Scholar 

  • Barati S, Tahmasebi F, Faghihi F (2020) Effects of mesenchymal stem cells transplantation on multiple sclerosis patients. Neuropeptides 8:102095

    Google Scholar 

  • Bornheim S, Croisier J-L, Maquet P, Kaux J-F (2020) Transcranial direct current stimulation associated with physical-therapy in acute stroke patients-A randomized, triple blind, sham-controlled study. Brain Stimul 13:329–336

    PubMed  Google Scholar 

  • Bourdillon P, Hermann B, Sitt JD, Naccache L (2019) Electromagnetic brain stimulation in patients with disorders of consciousness. Front Neurosci 13:223

    PubMed  PubMed Central  Google Scholar 

  • Braun R, Klein R, Walter HL, Ohren M, Freudenmacher L, Getachew K, Ladwig A, Luelling J, Neumaier B, Endepols H (2016) Transcranial direct current stimulation accelerates recovery of function, induces neurogenesis and recruits oligodendrocyte precursors in a rat model of stroke. Exp Neurol 279:127–136

    PubMed  Google Scholar 

  • Cruz-Martinez P, González-Granero S, Molina-Navarro MM, Pacheco-Torres J, Garcia-Verdugo JM, Geijo-Barrientos E, Jones J, Martinez S (2016) Intraventricular injections of mesenchymal stem cells activate endogenous functional remyelination in a chronic demyelinating murine model. Cell Death Dis 7:e2223–e2223

    CAS  PubMed  PubMed Central  Google Scholar 

  • Cullen CL, Young KM (2016) How does transcranial magnetic stimulation influence glial cells in the central nervous system? Front Neural Circuits 10:26

    PubMed  PubMed Central  Google Scholar 

  • Dewar D, Underhill SM, Goldberg MP (2003) Oligodendrocytes and ischemic brain injury. J Cereb Blood Flow Metab 23:263–274

    PubMed  Google Scholar 

  • Ferrucci R, Vergari M, Cogiamanian F, Bocci T, Ciocca M, Tomasini E, De Riz M, Scarpini E, Priori A (2014) Transcranial direct current stimulation (tDCS) for fatigue in multiple sclerosis. NeuroRehabilitation 34:121–127

    PubMed  Google Scholar 

  • Fregni F, Boggio PS, Santos MC, Lima M, Vieira AL, Rigonatti SP, Silva MTA, Barbosa ER, Nitsche MA, Pascual-Leone A (2006) Noninvasive cortical stimulation with transcranial direct current stimulation in Parkinson’s disease. Mov Disord 21:1693–1702

    PubMed  Google Scholar 

  • Gholami M, Nami M, Shamsi F, Jaberi KR, Kateb B, Jaberi AR (2021) Effects of transcranial direct current stimulation on cognitive dysfunction in multiple sclerosis. Neurophysiol Clin 51(4):319–328

    PubMed  Google Scholar 

  • Greenberg ME, Xu B, Lu B, Hempstead BL (2009) New insights in the biology of BDNF synthesis and release: implications in CNS function. J Neurosci 29:12764–12767

    CAS  PubMed  PubMed Central  Google Scholar 

  • Gutiérrez-Fernández M, Rodríguez-Frutos B, Ramos-Cejudo J, Otero-Ortega L, Fuentes B, Vallejo-Cremades MT, Sanz-Cuesta BE, Díez-Tejedor E (2015) Comparison between xenogeneic and allogeneic adipose mesenchymal stem cells in the treatment of acute cerebral infarct: proof of concept in rats. J Transl Med 13:1–10

    Google Scholar 

  • Hsu W-Y, Cheng C-H, Zanto TP, Gazzaley A, Bove RM (2021) Effects of transcranial direct current stimulation on cognition, mood, pain, and fatigue in multiple sclerosis: a systematic review and meta-analysis. Front Neurol 12:276

    Google Scholar 

  • Huang Y, Li Y, Chen J, Zhou H, Tan S (2015) Electrical stimulation elicits neural stem cells activation: new perspectives in CNS repair. Front Hum Neurosci 9:586

    PubMed  PubMed Central  Google Scholar 

  • Kashani IR, Chavoshi H, Pasbakhsh P, Hassani M, Omidi A, Mahmoudi R, Beyer C, Zendedel A (2017) Protective effects of erythropoietin against cuprizone-induced oxidative stress and demyelination in the mouse corpus callosum. Iran J Basic Med Sci 20:886

    PubMed  PubMed Central  Google Scholar 

  • Keuters MH, Aswendt M, Tennstaedt A, Wiedermann D, Pikhovych A, Rotthues S, Fink GR, Schroeter M, Hoehn M, Rueger MA (2015) Transcranial direct current stimulation promotes the mobility of engrafted NSCs in the rat brain. NMR Biomed 28:231–239

    PubMed  Google Scholar 

  • Kidgell DJ, Daly RM, Young K, Lum J, Tooley G, Jaberzadeh S, Zoghi M, Pearce AJ (2013) Different current intensities of anodal transcranial direct current stimulation do not differentially modulate motor cortex plasticity. Neural plast 1:9

    Google Scholar 

  • Li DC, Li Q (2017) Electrical stimulation of cortical neurons promotes oligodendrocyte development and remyelination in the injured spinal cord. Neural Regen Res 12:1613

    CAS  PubMed  PubMed Central  Google Scholar 

  • Liu A, Vöröslakos M, Kronberg G, Henin S, Krause MR, Huang Y, Opitz A, Mehta A, Pack CC, Krekelberg B (2018) Immediate neurophysiological effects of transcranial electrical stimulation. Nat Commun 9:1–12

    Google Scholar 

  • Ma X, Cheng O, Jiang Q, Yang J, Xiao H, Qiu H (2021) Activation of ephrinb1/EPHB2/MAP-2/NMDAR mediates hippocampal neurogenesis promoted by transcranial direct current stimulation in cerebral-ischemic mice. NeuroMol Med 23(4):521–530

    CAS  Google Scholar 

  • Maas DA, Angulo MC (2021) Can enhancing neuronal activity improve myelin repair in multiple sclerosis? Front Cell Neurosci 15:38

    Google Scholar 

  • Madadi S, Pasbakhsh P, Tahmasebi F, Mortezaee K, Khanehzad M, Boroujeni FB, Noorzehi G, Kashani IR (2019) Astrocyte ablation induced by La-aminoadipate (L-AAA) potentiates remyelination in a cuprizone demyelinating mouse model. Metab Brain Dis 34:593–603

    CAS  PubMed  Google Scholar 

  • Madhavan S, Shah B (2012) Enhancing motor skill learning with transcranial direct current stimulation–a concise review with applications to stroke. Front Psych 3:66

    Google Scholar 

  • Mercurio S, Serra L, Nicolis SK (2019) More than just stem cells: functional roles of the transcription factor Sox2 in differentiated glia and neurons. Int J Mol Sci 20:4540

    CAS  PubMed Central  Google Scholar 

  • Miniussi C, Cappa SF, Cohen LG, Floel A, Fregni F, Nitsche MA, Oliveri M, Pascual-Leone A, Paulus W, Priori A (2008) Efficacy of repetitive transcranial magnetic stimulation/transcranial direct current stimulation in cognitive neurorehabilitation. Brain Stimul 1:326–336

    PubMed  Google Scholar 

  • Mirzaie J, Raoofi A, Jamalpoor Z, Nezhadi A, Golmohammadi R (2020) Protective impacts of erythropoietin on myelinization of oligodendrocytes and schwann cells in CNS and PNS following cuprizone-induced multiple sclerosis-histology, molecular, and functional studies. J Chem Neuroanat 104:101750

    CAS  PubMed  Google Scholar 

  • Mojaverrostami S, Pasbakhsh P, Madadi S, Nekoonam S, Zarini D, Noori L, Shiri E, Salama M, Zibara K, Kashani IR (2020) Calorie restriction promotes remyelination in a cuprizone-Induced demyelination mouse model of multiple sclerosis. Metab Brain Dis 35:1211–1224

    CAS  PubMed  Google Scholar 

  • Monai H, Hirase H (2018) Astrocytes as a target of transcranial direct current stimulation (tDCS) to treat depression. Neurosci Res 126:15–21

    PubMed  Google Scholar 

  • Monai H, Ohkura M, Tanaka M, Oe Y, Konno A, Hirai H, Mikoshiba K, Itohara S, Nakai J, Iwai Y (2016) Calcium imaging reveals glial involvement in transcranial direct current stimulation-induced plasticity in mouse brain. Nat Commun 7:1–10

    Google Scholar 

  • Mosayebi-Samani M, Melo L, Agboada D, Nitsche MA, Kuo M-F (2020) Ca2+ channel dynamics explain the nonlinear neuroplasticity induction by cathodal transcranial direct current stimulation over the primary motor cortex. Eur Neuropsychopharmacol 38:63–72

    CAS  PubMed  Google Scholar 

  • Nitsche MA, Boggio PS, Fregni F, Pascual-Leone A (2009) Treatment of depression with transcranial direct current stimulation (tDCS): a review. Exp Neurol 219:14–19

    PubMed  Google Scholar 

  • Ortiz FC, Habermacher C, Graciarena M, Houry P-Y, Nishiyama A, Oumesmar BN, Angulo MC (2019) Neuronal activity in vivo enhances functional myelin repair. JCI Insight 4:9

    Google Scholar 

  • Pelegri NG, Gorrie CA, Santos J (2019) Rat hippocampal neural stem cell modulation using PDGF, VEGF, PDGF/VEGF, and BDNF. Stem Cells Int. https://doi.org/10.1155/2019/4978917

    Article  PubMed  PubMed Central  Google Scholar 

  • Pourabdolhossein F, Hamidabadi HG, Bojnordi MN, Rostam SM (2017) Stem cell therapy: a promising therapeutic approach for multiple sclerosis. Multiple sclerosis: perspectives in treatment and pathogenesis. Exon Publications, Brisbane, pp 85–108

    Google Scholar 

  • Rueger MA, Keuters MH, Walberer M, Braun R, Klein R, Sparing R, Fink GR, Graf R, Schroeter M (2012) Multi-session transcranial direct current stimulation (tDCS) elicits inflammatory and regenerative processes in the rat brain. PLoS ONE 7(8):e43776

    CAS  PubMed  PubMed Central  Google Scholar 

  • Samaddar S, Vazquez K, Ponkia D, Toruno P, Sahbani K, Begum S, Abouelela A, Mekhael W, Ahmed Z (2017) Transspinal direct current stimulation modulates migration and proliferation of adult newly born spinal cells in mice. J Appl Physiol 122:339–353

    CAS  PubMed  Google Scholar 

  • Sherafat MA, Heibatollahi M, Mongabadi S, Moradi F, Javan M, Ahmadiani A (2012) Electromagnetic field stimulation potentiates endogenous myelin repair by recruiting subventricular neural stem cells in an experimental model of white matter demyelination. J Mol Neurosci 48:144–153

    CAS  PubMed  Google Scholar 

  • Sivandzade F, Cucullo L (2021) Regenerative stem cell therapy for neurodegenerative diseases: an overview. Int J Mol Sci 22:2153

    CAS  PubMed  PubMed Central  Google Scholar 

  • Spaas J, Van Veggel L, Schepers M, Tiane A, Van Horssen J, Wilson DM, Moya PR, Piccart E, Hellings N, Eijnde BO (2021) Oxidative stress and impaired oligodendrocyte precursor cell differentiation in neurological disorders. Cell Mol Life Sci 78(10):4615–4637

    CAS  PubMed  PubMed Central  Google Scholar 

  • Sullivan GM, Knutsen AK, Peruzzotti-Jametti L, Korotcov A, Bosomtwi A, Dardzinski BJ, Bernstock JD, Rizzi S, Edenhofer F, Pluchino S (2020) Transplantation of induced neural stem cells (iNSCs) into chronically demyelinated corpus callosum ameliorates motor deficits. Acta Neuropathol Commun 8:1–23

    Google Scholar 

  • Tahmasebi F, Pasbakhsh P, Barati S, Madadi S, Kashani IR (2021) The effect of microglial ablation and mesenchymal stem cell transplantation on a cuprizone-induced demyelination model. J Cell Physiol 236:3552–3564

    CAS  PubMed  Google Scholar 

  • Tehovnik E, Tolias A, Sultan F, Slocum W, Logothetis N (2006) Direct and indirect activation of cortical neurons by electrical microstimulation. J Neurophysiol 96:512–521

    CAS  PubMed  Google Scholar 

  • Ulam F, Shelton C, Richards L, Davis L, Hunter B, Fregni F, Higgins K (2015) Cumulative effects of transcranial direct current stimulation on EEG oscillations and attention/working memory during subacute neurorehabilitation of traumatic brain injury. Clin Neurophysiol 126:486–496

    CAS  PubMed  Google Scholar 

  • Wachter D, Wrede A, Schulz-Schaeffer W, Taghizadeh-Waghefi A, Nitsche MA, Kutschenko A, Rohde V, Liebetanz D (2011) Transcranial direct current stimulation induces polarity-specific changes of cortical blood perfusion in the rat. Exp Neurol 227:322–327

    PubMed  Google Scholar 

  • Winkler C, Reis J, Hoffmann N, Gellner A-K, Münkel C, Curado MR, Furlanetti L, Garcia J, Döbrössy MD, Fritsch B (2017) Anodal transcranial direct current stimulation enhances survival and integration of dopaminergic cell transplants in a rat Parkinson model. Eneuro. https://doi.org/10.1523/ENEURO.0063-17.2017

    Article  PubMed  PubMed Central  Google Scholar 

  • Xia Y, Khalid W, Yin Z, Huang G, Bikson M, Fu BM (2020) Modulation of solute diffusivity in brain tissue as a novel mechanism of transcranial direct current stimulation (tDCS). Sci Rep 10:1–12

    Google Scholar 

  • Xiu Y, Cheng GH, Peng C, Wang Y, Li YD, Chao FL, Tang Y (2017) Ultrastructural abnormalities and loss of myelinated fibers in the corpus callosum of demyelinated mice induced by cuprizone. J Neurosci Res 95:1677–1689

    CAS  PubMed  Google Scholar 

  • Zaninotto AL, El-Hagrassy MM, Green JR, Babo M, Paglioni VM, Benute GG, Paiva WS (2019) Transcranial direct current stimulation (tDCS) effects on traumatic brain injury (TBI) recovery: a systematic review. Dement Neuropsychol 13:172–179

    PubMed  PubMed Central  Google Scholar 

  • Zarini D, Pasbakhsh P, Nekoonam S, Mojaverrostami S, Ghasemi S, Shabani M, Kashani IR (2021) Protective features of calorie restriction on cuprizone-induced demyelination via modulating microglial phenotype. J Chem Neuroanat 116:102013

    CAS  PubMed  Google Scholar 

  • Zendedel A, Beyer C, Kipp M (2013) Cuprizone-induced demyelination as a tool to study remyelination and axonal protection. J Mol Neurosci 51:567–572

    CAS  PubMed  Google Scholar 

  • Zhang RL, Zhang ZG, Chopp M (2008) Ischemic stroke and neurogenesis in the subventricular zone. Neuropharmacology 55:345–352

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang C, Zhang G, Rong W, Wang A, Wu C, Huo X (2014) Oscillating field stimulation promotes spinal cord remyelination by inducing differentiation of oligodendrocyte precursor cells after spinal cord injury. Bio-Med Mater Eng 24:3629–3636

    Google Scholar 

  • Zhang K-Y, Rui G, Zhang J-P, Guo L, An G-Z, Lin J-J, He W, Ding G-R (2020a) Cathodal tDCS exerts neuroprotective effect in rat brain after acute ischemic stroke. BMC Neurosci 21:1–13

    Google Scholar 

  • Zhang K, Guo L, Zhang J, Rui G, An G, Zhou Y, Lin J, Xing J, Zhao T, Ding G (2020b) tDCS accelerates the rehabilitation of MCAO-induced motor function deficits via neurogenesis modulated by the Notch1 signaling pathway. Neurorehabil Neural Repair 34:640–651

    PubMed  Google Scholar 

  • Zilkha-Falb R, Kaushansky N, Kawakami N, Ben-Nun A (2016) Post-CNS-inflammation expression of CXCL12 promotes the endogenous myelin/neuronal repair capacity following spontaneous recovery from multiple sclerosis-like disease. J Neuroinflammation 13:1–19

    Google Scholar 

Download references

Acknowledgements

This project was financially supported by Baqiyatallah University of Medical Sciences Grant No. 98000512.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alireza Mohammadi.

Ethics declarations

Competing interest

The authors declared no potential conflict of interest.

Ethical approval

This article does not contain any studies with human participants performed by any of the authors. All experiments in this study were carried out equally with the guidelines of the Institutional Animal Care and Use Committee (IACUC) and Ethics Committees of Baqiyatallah University of Medical Sciences, Tehran, Iran. Animals were kept in quarantine for approximately 1 week before their use. All animals were kept in standard conditions with unlimited access to food and water. Deep anesthesia was employed for animal surgical procedures.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mojaverrostami, S., Khadivi, F., Zarini, D. et al. Combination effects of mesenchymal stem cells transplantation and anodal transcranial direct current stimulation on a cuprizone-induced mouse model of multiple sclerosis. J Mol Histol 53, 817–831 (2022). https://doi.org/10.1007/s10735-022-10092-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10735-022-10092-8

Keywords

Navigation