Skip to main content

Advertisement

Log in

Improvement of Corrosion Resistance and Structural Integrity of Plasma Sprayed Ni-clad Al Coatings via Pre-oxidation

  • Peer Reviewed
  • Published:
Journal of Thermal Spray Technology Aims and scope Submit manuscript

Abstract

Biomass corrosion is a serious problem that affects the reliability and efficiency of biomass boilers. Ni-based coatings are a potential choice to combat biomass corrosion. In this study, the Ni-clad Al coatings were prepared by air plasma spraying, and the coatings were pre-oxidized in an air atmosphere at 700 °C for 6 h. The corrosion resistance of the as-sprayed and pre-oxidized Ni-clad Al coating exposed to KCl was studied at 600 °C for 168 h. The as-sprayed Ni-clad Al coating showed a much higher corrosion rate due to the porous nature of the coating and faster penetration of corrosion products. The pre-oxidation treatment significantly reduced the corrosion rate of the Ni-clad Al coating. The maximum weight gain of the pre-oxidized Ni-clad Al coating was reduced by 23.5% compared to the as-sprayed Ni-clad coating. After pre-oxidation, multiple NiO layers were formed, and voids were significantly reduced. The corrosion products on the surface of the coating changed from nickel-rich oxides to aluminum-rich oxides after the pre-oxidation treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. N.L. Panwar, S.C. Kaushik and S. Kothari, Role of Renewable Energy Sources in Environmental Protection: A Review, Renew. Sustain. Energy Rev., 2011, 15, p 1513-1524.

    Article  Google Scholar 

  2. M. Li, N. Luo and Y. Lu, Biomass Energy Technological Paradigm (BETP): Trends in This Sector, Sustainability., 2017, 9, p 567.

    Article  Google Scholar 

  3. F. Trifirò, Fuels from Biomass, Tec. Ital. J. Eng. Sci., 2019, 63, p 86-93.

    Google Scholar 

  4. H.L. Chum and R.P. Overend, Biomass and Renewable Fuels, Fuel Process. Technol., 2001, 71, p 187-195.

    Article  CAS  Google Scholar 

  5. C. De Blasio, Biodiesel, Green Energy Technol. C. De Blasio Ed., Springer, Cham, 2019, p 253-265

    Google Scholar 

  6. A. Demirbas, Potential Applications of Renewable Energy Sources, Biomass Combustion Problems in Boiler Power Systems and Combustion Related Environmental Issues, Prog. Energy Combust. Sci., 2005, 31, p 171-192.

    Article  CAS  Google Scholar 

  7. I. Obernberger, T. Brunner and G. Bärnthaler, Chemical Properties of Solid Biofuels-Significance and Impact, Biomass Bioenerg., 2006, 30, p 973-982.

    Article  CAS  Google Scholar 

  8. H.P. Nielsen, F.J. Frandsen, K. Dam-Johansen and L.L. Baxter, The Implications of Chlorine-Associated Corrosion on the Operation of Biomass-Fired Boilers, Prog. Energy Combust. Sci., 2000, 26, p 283-298.

    Article  CAS  Google Scholar 

  9. L.J.R. Nunes, J.C.O. Matias and J.P.S. Catalão, Biomass Combustion Systems: A Review on the Physical and Chemical Properties of the Ashes, Renew. Sustain. Energy Rev., 2016, 53, p 235-242.

    Article  CAS  Google Scholar 

  10. D.L. Wu, K.V. Dahl, T.L. Christiansen, M. Montgomery and J. Hald, Corrosion Behaviour of Ni and Nickel Aluminide Coatings Exposed in a Biomass Fired Power Plant for Two Years, Surf. Coat. Technol., 2019, 362, p 355-365.

    Article  CAS  Google Scholar 

  11. A.A. Khan, W. de Jong, P.J. Jansens and H. Spliethoff, Biomass Combustion in Fluidized Bed Boilers: Potential Problems and Remedies, Fuel Process. Technol., 2009, 90, p 21-50.

    Article  CAS  Google Scholar 

  12. Y.Y. Lee and M.J. McNallan, Ignition of Nickel in Environments Containing Oxygen and Chlorine, Metall. Trans. A., 1991, 18, p 1099-1107.

    Article  Google Scholar 

  13. A. Zahs, M. Spiegel and H.J. Grabke, Chloridation and Oxidation of Iron, Chromium, Nickel and their Alloys in Chloridizing and Oxidizing Atmospheres at 400-700 °C, Corros. Sci., 2000, 42, p 1093-1122.

    Article  CAS  Google Scholar 

  14. C. Pettersson, J. Pettersson, H. Asteman, J.E. Svensson and L.G. Johansson, KCl-Induced High Temperature Corrosion of the Austenitic Fe-Cr-Ni Alloys 304L and SANICRO 28 at 600 °C, Corros. Sci., 2006, 48, p 1368-1378.

    Article  CAS  Google Scholar 

  15. N. Folkeson, T. Jonsson, M. Halvarsson, L.-G. Johansson and J.-E. Svensson, The influence of small amounts of KCl(s) on the high temperature corrosion of a Fe-2.25Cr-1Mo steel at 400 and 500 °C, Mater. Corros., 2011, 62, p 606-615.

    Article  CAS  Google Scholar 

  16. Y. Shinata, Accelerated Oxidation Rate of Chromium Induced by Sodium Chloride, Oxid. Met., 1987, 27, p 315-332.

    Article  CAS  Google Scholar 

  17. J. Lehmusto, B.J. Skrifvars, P. Yrjas and M. Hupa, High Temperature Oxidation of Metallic Chromium Exposed to Eight Different Metal Chlorides, Corros. Sci., 2011, 53, p 3315-3323.

    Article  CAS  Google Scholar 

  18. R. Jafari and E. Sadeghi, High-Temperature Corrosion Performance of HVAF-Sprayed NiCr, NiAl, and NiCrAlY Coatings with Alkali Sulfate/Chloride Exposed to Ambient Air, Corros. Sci., 2019, 160, p 108066.

    Article  CAS  Google Scholar 

  19. E. Sadeghimeresht, N. Markocsan and P. Nylén, A Comparative Study on Ni-Based Coatings Prepared by HVAF, HVOF, and APS Methods for Corrosion Protection Applications, J. Therm. Spray Technol., 2016, 25, p 1604-1616.

    Article  CAS  Google Scholar 

  20. T.J. Pan, Y.S. Li, Q. Yang, R.F. Feng and A. Hirose, Internal Oxidation and Phase Transformations of Multi-Phase Fe-Ni-Al and Fe-Ni-Al-Cr Alloys Induced by KCl Corrosion, Corros. Sci., 2011, 53, p 2115-2121.

    Article  CAS  Google Scholar 

  21. D. Wu, Z. Yuan, S. Liu, J. Zheng, X. Wei and C. Zhang, Recent Development of Corrosion Factors and Coating Applications in Biomass Firing Plants, Coatings, 2020, 10, p 1001.

    Article  CAS  Google Scholar 

  22. S. Kiamehr, K.V. Dahl, M. Montgomery and M.A.J. Somers, KCl-Induced High Temperature Corrosion of Selected Commercial Alloys: Part II: Alumina and Silica-Formers, Mater. Corros., 2016, 67, p 26-38.

    Article  CAS  Google Scholar 

  23. J. Lehmusto, P. Yrjas, B.J. Skrifvars and M. Hupa, High Temperature Corrosion of Superheater Steels by KCl and K2CO3 Under Dry and Wet Conditions, Fuel Process. Technol., 2012, 104, p 253-264.

    Article  CAS  Google Scholar 

  24. J. Pettersson, H. Asteman, J.E. Svensson and L.G. Johansson, KCl Induced Corrosion of a 304-type Austenitic Stainless Steel at 600°C; The Role of Potassium, Oxid. Met., 2005, 64, p 23-41.

    Article  CAS  Google Scholar 

  25. T. Jonsson, J. Froitzheim, J. Pettersson, J.E. Svensson, L.G. Johansson and M. Halvarsson, The Influence of KCl on the Corrosion of an Austenitic Stainless Steel (304L) in Oxidizing Humid Conditions at 600°C: A Microstructural Study, Oxid. Met., 2009, 72, p 213-239.

    Article  CAS  Google Scholar 

  26. S. Enestam, D. Bankiewicz, J. Tuiremo, K. Mäkelä and M. Hupa, Are NaCl and KCl Equally Corrosive on Superheater Materials of Steam Boilers?, Fuel, 2013, 104, p 294-306.

    Article  CAS  Google Scholar 

  27. J. Pettersson, J.E. Svensson and L.G. Johansson, Alkali Induced Corrosion of 304-Type Austenitic Stainless Steel at 600°C; Comparison between KCl, K2CO3 and K2SO4, Mater. Sci. Forum., 2008, 595-598, p 367-375.

    Article  Google Scholar 

  28. T. Hussain, T. Dudziak, N.J. Simms and J.R. Nicholls, Fireside Corrosion Behavior of HVOF and Plasma-Sprayed Coatings in Advanced Coal/Biomass Co-Fired Power Plants, J. Therm. Spray Technol., 2013, 22, p 797-807.

    Article  CAS  Google Scholar 

  29. R. Jafari, E. Sadeghimeresht, T.S. Farahani, M. Huhtakangas, N. Markocsan and S. Joshi, KCl-Induced High-Temperature Corrosion Behavior of HVAF-Sprayed Ni-Based Coatings in Ambient Air, J. Therm. Spray Technol., 2018, 27, p 500-511.

    Article  CAS  Google Scholar 

  30. M. Bai, L. Reddy and T. Hussain, Experimental and Thermodynamic Investigations on the Chlorine-Induced Corrosion of HVOF Thermal Sprayed NiAl Coatings and 304 Stainless Steels at 700 °C, Corros. Sci., 2018, 135, p 147-157.

    Article  CAS  Google Scholar 

  31. S. Paul and M.D.F. Harvey, Corrosion Testing of Ni alloy HVOF Coatings in High Temperature Environments for Biomass Applications, J. Therm. Spray Technol., 2013, 22, p 316-327.

    Article  CAS  Google Scholar 

  32. E. Sadeghi and N. Markocsan, Shrikant Joshi, Advances in Corrosion-Resistant Thermal Spray Coatings for Renewable Energy Power Plants: Part II—Effect of Environment and Outlook, J. Therm. Spray Technol., 2019, 28, p 1789-1850.

    Article  Google Scholar 

  33. E. Sadeghimeresht, L. Reddy, T. Hussain, N. Markocsan and S. Joshi, Chlorine-Induced High Temperature Corrosion of HVAF-Sprayed Ni-Based Alumina and Chromia Forming Coatings, Corros. Sci., 2018, 132, p 170-184.

    Article  CAS  Google Scholar 

  34. J. Eklund, J. Phother, E. Sadeghi, S. Joshi and J. Liske, High-Temperature Corrosion of HVAF-Sprayed Ni-Based Coatings for Boiler Applications, Oxid. Met., 2019, 91, p 729-747.

    Article  CAS  Google Scholar 

  35. H. Asteman and M. Spiegel, Investigation of the HCl (g) Attack on Pre-Oxidized Pure Fe, Cr, Ni and Commercial 304 Steel at 400 °C, Corros. Sci., 2007, 49, p 3626-3637.

    Article  CAS  Google Scholar 

  36. P. Viklund and R. Pettersson, HCl-Induced High Temperature Corrosion of Stainless Steels in Thermal Cycling Conditions and the Effect of Preoxidation, Oxid. Met., 2011, 76, p 111-126.

    Article  CAS  Google Scholar 

  37. S.C. Okoro, M. Kvisgaard, M. Montgomery, F.J. Frandsen and K. Pantleon, Pre-Oxidation and its Effect on Reducing High-Temperature Corrosion of Superheater Tubes During Biomass Firing, Surf. Eng., 2017, 33, p 428-432.

    Article  CAS  Google Scholar 

  38. O. Hunziker and W. Kurz, Directional Solidification and Phase Equilibria in the Ni-Al System, Metall. Mater. Trans. A., 1999, 30, p 3167-3175.

    Article  Google Scholar 

  39. B. Gleeson, N. Mu and S. Hayashi, Compositional Factors Affecting the Establishment and Maintenance of Al2O3 Scales on Ni-Al-Pt Systems, J. Mater. Sci., 2009, 44, p 1704-1710.

    Article  CAS  Google Scholar 

  40. R. Peraldi, D. Monceau and B. Pieraggi, Correlations Between Growth Kinetics and Microstructure for Scales Formed by High-Temperature Oxidation of Pure Nickel. II. Growth Kinetics, Oxid. Met., 2002, 58, p 275-295.

    Article  CAS  Google Scholar 

  41. B. Grégoire, X. Montero, M.C. Galetz, G. Bonnet and F. Pedraza, Correlations Between the Kinetics and the Mechanisms of Hot Corrosion of Pure Nickel at 700 °C, Corros. Sci., 2019, 155, p 134-145.

    Article  Google Scholar 

  42. D.L. Wu, K.V. Dahl, F.B. Grumsen, T.L. Christiansen, M. Montgomery and J. Hald, Breakdown Mechanism of γ-Al2O3 on Ni2Al3 Coatings Exposed in a Biomass Fired Power Plant, Corros. Sci., 2020, 170, p 108583.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was financially supported by the National Natural Science Foundation of China (Grant No. 52101100), the Natural Science Foundation of Jiangsu Province (Grant No. BK20190915) and the Natural Science Foundation of the Jiangsu Higher Education Institutions of China (Grant No. 21KJB430008).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chao Zhang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, D., Wu, H., Yuan, Z. et al. Improvement of Corrosion Resistance and Structural Integrity of Plasma Sprayed Ni-clad Al Coatings via Pre-oxidation. J Therm Spray Tech 31, 2422–2434 (2022). https://doi.org/10.1007/s11666-022-01451-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11666-022-01451-8

Keywords

Navigation