Skip to main content
Log in

Effect of SiC Particle Size on Microstructure, Mechanical Properties, and Oxidation Behavior of HfB2–SiC Composites Prepared by Spark Plasma Sintering

  • INORGANIC MATERIALS AND NANOMATERIALS
  • Published:
Russian Journal of Inorganic Chemistry Aims and scope Submit manuscript

Abstract

In this study, HfB2–SiC composites including of micron, submicron and nano-sized silicon carbide powder have been fabricated using spark plasma sintering at 1900°C for 10 min. Densification, microstructure, mechanical and oxidation behavior of prepared composites have been investigated. Oxidation resistance of composites has been studied at 1450°C for 32 h. Weight changes and the thickness of formed oxide layer has bee measured. By adding of finer SiC, the grain size of HfB2 decreased and highest relative density (99.84%) and lowest apparent porosity (0.13%) have been obtained for HfB2–SiC nanocomposite. The results show that hardness, strength, and toughness increased from 19.04 to 24.28 GPa, 405.16 to 524.88 MPa and 4.43 to 4.64 MPa m1/2, respectively, by decreasing SiC particle sizes. In addition, the results have shown that thickness of glass layer decreased when SiC particle sizes. Therefore, the oxidation resistance has been enhanced by refinement of microstructure due to nano-sized SiC powders.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.
Fig. 11.

Similar content being viewed by others

REFERENCES

  1. Z. Balak and M. Zakeri, Int. J. Refract. Met. Hard Mater. 54, 127 (2016).

    Article  CAS  Google Scholar 

  2. M. Shojaie-Bahaabad and A. Hasani-Arefi, Mater. Res. Exp. 7 (2020).

  3. F. Monteverde, J. Alloys. Compd. 428, 197 (2007).

    Article  CAS  Google Scholar 

  4. F. Monteverde, A. Bellosi, and L. Scatteia, Mater. Sci. Eng. A 485, 415 (2008).

    Article  Google Scholar 

  5. C. Musa, R. Orrù, D. Sciti, L. Silvestroni, and G. Cao, J. Eur. Ceram. Soc. 33, 603 (2013).

    Article  CAS  Google Scholar 

  6. E. P. Simonenko, N. P. Simonenko, A. N. Gordeev, et al., Russ. J. Inorg. Chem. 65, 1596 (2020). https://doi.org/10.1134/S0036023620100198

    Article  CAS  Google Scholar 

  7. R. Ghelich, M. R. Jahannama, H. Abdizadeh, F. S. Torknik, and M. R. Vaezi, Mater. Chem. Phys. 248, 1228876 (2020).

    Article  Google Scholar 

  8. B. Nayebi, M. Shahedi Asl, M. Ghassemi Kakroudi, and M. Shokouhimehr, Int. J. Refract. Met. Hard Mater. 54, 7 (2016).

    Article  CAS  Google Scholar 

  9. T. H. Squire and J. Marschall, J. Eur. Ceram. Soc. 30, 2239 (2010).

    Article  CAS  Google Scholar 

  10. N. Gupta, A. Mukhopadhyay, K. Pavani, and B. Basu, Mater. Sci. Eng. A 534, 111 (2012).

    Article  CAS  Google Scholar 

  11. W. M. Guo, J. Vleugels, G. J. Zhang, P.L. Wang, and O. Van der Biest, Scr. Mater. 62, 802 (2010).

    Article  CAS  Google Scholar 

  12. E. P. Simonenko, N. P. Simonenko, A. S. Lysenkov, et al., Russ. J. Inorg. Chem. 65, 3, 446 (2020). https://doi.org/10.1134/S0036023620030146

    Article  CAS  Google Scholar 

  13. S. Guo, Y. Kagawa, T. Nishimura, and H. Tanaka, Ceram. Int. 34, 1811 (2008).

    Article  CAS  Google Scholar 

  14. S. Q. Guo, J. Eur. Ceram. Soc. 29, 995 (2009).

    Article  CAS  Google Scholar 

  15. A. Snyder, D. Quach, J. R. Groza, T. Fisher, S. Hodson, and L. A. Stanciu, Mater. Sci. Eng. A 528, 6079 (2011).

    Article  CAS  Google Scholar 

  16. R. Tu, N. Li, Q. Li, et al., J. Eur. Ceram. Soc. 36, 959 (2016).

    Article  CAS  Google Scholar 

  17. Fei Peng, P.H.D. Thesis (Georgia institute, 2009).

  18. H. J. Brown-Shaklee, W. G. Fahrenholtz, and G. E. Hilmas, J. Am. Ceram. Soc. 94, 49 (2011).

    Article  CAS  Google Scholar 

  19. F. Monteverde, J. Mater. Sci. 43, 1002 (2008).

    Article  CAS  Google Scholar 

  20. L. Weng, X. Zhang, J. Han, and W. Han, J. Alloys. Compd. 473, 314 (2009).

    Article  CAS  Google Scholar 

  21. D. Sciti, G. Bonnefont, G. Fantozzi, and L. Silvestroni, J. Eur. Ceram. Soc. 30, 3253 (2010).

    Article  CAS  Google Scholar 

  22. S. Ghadami, E. Taheri-Nassaj, and H. R. Baharvandi, J. Alloys. Compd. 809, 151705 (2019).

    Article  CAS  Google Scholar 

  23. De-Wei Ni, Ji-Xuan Liu, and Guo-Jun Zhang, J. Eur. Ceram. Soc. 2, 3627 (2012).

    Article  Google Scholar 

  24. J. Liua, G. J. Zhang, F. Xua, and W. Wub, J. Eur. Ceram. Soc. 5, 2707 (2015).

    Google Scholar 

  25. De. Ni, J. Liu, and G. Zhang, J. Eur. Ceram. Soc. 32, 2557 (2012).

    Article  CAS  Google Scholar 

  26. M. Shahriari, M. Zakeri, M. Razavi, and M. R. Rahimipour, Int. J. Refract. Met. Hard Mater. 93, 105350 (2020).

    Article  CAS  Google Scholar 

  27. Ye. Yuan, J. X. Liu, and G. J. Zhang, Ceram. Int. 42, 7861 (2016).

    Article  CAS  Google Scholar 

  28. A. Nisar, M. M. Khan, and Bajpai, Int. J. Refract. Met. Hard Mater. 81, 111 (2019).

    Article  CAS  Google Scholar 

  29. S. Guo, K. Naito, and Y. Kagawa, Ceram. Int. 39, 1567 (2013).

    Article  CAS  Google Scholar 

  30. H. R. Baharvandi and S. Mashayekh, Int. J. Appl. Ceram. Technol. 17, 449 (2020).

    Article  CAS  Google Scholar 

  31. G. Anstis, P. Chantikul, B. R. Lawn, and D. Marshall, J. Am.Ceram. Soc. 64, 533 (1981).

    Article  CAS  Google Scholar 

  32. M. Shahriari, M. Zakeri, M. Razavi, and M. R. Rahimipour, Int. J. Refract. Met. Hard Mater. 93, 105350 (2020).

    Article  CAS  Google Scholar 

  33. S. M. Emami, E. Salahi, M. Zakeri, and S.A. Tayebifard, Ceram. Int. 43, 111 (2017).

    Article  CAS  Google Scholar 

  34. J. M. Cisneros Herreros, and G. Peñalva Moreno, GEF Bull. Biosci. 1, 1 (2010).

  35. M. Mashhadi, H. Khaksari, and S. Safi, Integr. Med. Res. 4, 416 (2015).

  36. N. P. Vafa, M. G. Kakroudi, and M. S. Asl, Ceram. Int. 46, 3725 (2020).

  37. F. Monteverde, Compos. Sci. Tehnol. 65, 1869 (2005).

    Article  CAS  Google Scholar 

  38. F. Monteverde, Appl. Phys. A Mater. Sci. Process. 82, 329 (2006).

    Article  CAS  Google Scholar 

  39. S. S. Hwang, A. L. Vasiliev, and N. P. Padture, Mater. Sci. Eng. A 464, 216 (2007).

    Article  Google Scholar 

  40. N. Liaoa, D. Jiac, and Z. Yangc, J. Phys. Chem. Solid. 136, 109153 (2020).

    Article  Google Scholar 

  41. A. Sayyadi-Shahraki, S. M. Rafiaei, S. Ghadami, and K. A. Nekouee, J. Alloy. Comp. 776, 798 (2019).

    Article  CAS  Google Scholar 

  42. S. Ghadami, E. Taheri-nassaj, H. R. Baharvandi, and F. Ghadami, Ceram. Int. 46, 20299 (2020).

    Article  CAS  Google Scholar 

  43. P. Wang, H. Li, J. Sun, R. Yuan, L. Zhang, Y. Zhang, and T. Li, Surf. Coat. Tech. 339, 124 (2018).

    Article  CAS  Google Scholar 

  44. H. Jin, S. Meng, X. Zhang, Q. Zeng, and J. Niu, J. Eur. Ceram. Soc. 36, 1855 (2016).

    Article  CAS  Google Scholar 

  45. R. Hassan, R. Kundu, and K. Balani, Ceram. Int. 46, 11056 (2020).

    Article  CAS  Google Scholar 

  46. Z. Kovacova, L. Baca, E. Neubauer, and M. Kitzmantel, J. Eur. Ceram. Soc. 36, 3041 (2016). https://doi.org/10.1016/j.jeurceramsoc.2015.12.028

  47. X. Ren, H. Mo, W. Wang, and P. Feng, L. Guo, Z. Li, Mater. Chem. Phys. (2018).

  48. E. P. Simonenko, N. P. Simonenko, I. A. Nagornov, and V. G. Sevastyanov, Russ. J. Inorg. Chem. 65, 1416 (2020). https://doi.org/10.1134/S003602362009020X

    Article  Google Scholar 

  49. E. P. Simonenko, N. P. Simonenko, A. N. Gordeev, and A. F. Kolesnikov, Russ. J. Inorg. Chem. 65, 606 (2020). https://doi.org/10.1134/S0036023620040191

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Shojaie-Bahaabad.

Ethics declarations

The authors declare that they have no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sakvand, M., Shojaie-Bahaabad, M. & Nikzad, L. Effect of SiC Particle Size on Microstructure, Mechanical Properties, and Oxidation Behavior of HfB2–SiC Composites Prepared by Spark Plasma Sintering. Russ. J. Inorg. Chem. 67, 1682–1693 (2022). https://doi.org/10.1134/S0036023622100485

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0036023622100485

Keywords:

Navigation