Skip to main content
Log in

Dependence of the contact line roughness exponent on the contact angle on substrates with dilute mesa defects: numerical study

  • Regular Article - Soft Matter
  • Published:
The European Physical Journal E Aims and scope Submit manuscript

Abstract

We compute the roughness exponent of the averaged contact line width of a liquid on heterogeneous substrates with randomly distributed dilute defects in statics. We study the case of circular “mesa”-type defects placed on homogeneous base. The shape of the liquid meniscus and the contact line are obtained numerically, using the full capillary model when a vertical solid plate, partially dipped in a tank of liquid, is slowly withdrawing from the liquid. The obtained results imply that the contact line roughness exponent depends on the contact angle \(\theta \), which the liquid meniscus forms with the solid homogeneous base. The roughness exponent grows when \( |\theta - 90^{\circ } |\) decreases, and it changes from 0.5 at \(|\theta - 90^{\circ } |= 70^{\circ }\) to 0.67 at \(|\theta - 90^{\circ } |= 0^{\circ }\). A wide range of contact angles (\(60^{\circ }\)\(107.5^{\circ }\)) is present, where the roughness exponent is practically constant, equal to previously obtained experimental results on the magnitude of the roughness exponent and its dependence on \(\theta \).

Graphic abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability

The data that support the findings of this study are available within the article.

References

  1. J.F. Joanny, P.G. de Gennes, J. Chem. Phys. 81, 552 (1984)

    Article  ADS  Google Scholar 

  2. P.G. de Gennes, Rev. Mod. Phys. 57, 827 (1985)

    Article  ADS  Google Scholar 

  3. Y. Imry, S. Ma, Phys. Rev. Lett. 35, 1399 (1975)

    Article  ADS  Google Scholar 

  4. M.O. Robbins, J.F. Joanny, Europhys. Lett. 3, 729 (1987)

    Article  ADS  Google Scholar 

  5. E. Rolley, C. Guthmann, R. Gombrowicz, V. Repain, Phys. Rev. Lett. 80, 2865 (1998)

    Article  ADS  Google Scholar 

  6. A. Prevost, E. Rolley, C. Guthmann, M. Poujade, Phys. B 284–288, 145 (2000)

    Article  ADS  Google Scholar 

  7. A. Prevost, E. Rolley, C. Guthmann, Phys. Rev. B 65, 064517, 064517 (2002)

  8. S. Moulinet, C. Guthmann, E. Rolley, Eur. Phys. J. E 8, 437 (2002)

    Article  Google Scholar 

  9. A.-L. Barabasi, H.E. Stanley, Fractal Concepts in Surface Growth (Cambridge University Press, Cambridge, 1995)

    Book  Google Scholar 

  10. K. Wiese, Theory and Experiments for Disordered Elastic Manifolds, Depinning, Avalanches, and Sandpiles,. https://arxiv.org/abs/2102.01215v1

  11. D. Bonn, J. Eggers, J. Indekeu, J. Meunier, E. Rolley, Rev. Mod. Phys. 81, 739 (2009)

    Article  ADS  Google Scholar 

  12. J. Vannimenus, Phys. A 314, 264 (2002)

    Article  MathSciNet  Google Scholar 

  13. P. Le Doussal, K.J. Wiese, P. Chauve, Phys. Rev. B 66, 174201 (2002)

    Article  ADS  Google Scholar 

  14. P. Chauve, P. Le Doussal, K.J. Wiese, Phys. Rev. Lett. 86, 1785 (2001)

    Article  ADS  Google Scholar 

  15. A. Rosso, W. Krauth, Phys. Rev. E 65, 025101(R) (2002)

    Article  ADS  Google Scholar 

  16. P. Le Doussal, K.J. Wiese, E. Raphael, R. Golestanian, Phys. Rev. Let. 96, 015702 (2006)

    Article  ADS  Google Scholar 

  17. E. Bormashenko, A. Musin, G. Whyman, Z. Barkay, M. Zinigrad, Langmuir 29, 14163 (2013)

    Article  Google Scholar 

  18. S. Iliev, Comput. Methods Appl. Mech. Eng. 126, 251 (1995)

    Article  ADS  Google Scholar 

  19. S. Iliev, N. Pesheva, V.S. Nikolayev, Phys. Rev. E 78, 021605 (2008)

    Article  ADS  Google Scholar 

  20. S. Iliev, N. Pesheva, P. Iliev, Phys. Rev. E 97, 042801 (2018)

    Article  ADS  Google Scholar 

  21. P. Iliev, N. Pesheva, S. Iliev, Phys. Rev. E 98, 060801(R) (2018)

    Article  ADS  Google Scholar 

  22. E.L. Decker, S. Garoff, Langmuir 13, 6321 (1997)

    Article  Google Scholar 

  23. A.D. Myshkis, V.G. Babskii, N.D. Kopachevskii, L.A. Slobozhanin, A.D. Tyuptsov, Low Gravity Fluid Mechanics (Springer-Verlag, Berlin, 1987)

    Book  Google Scholar 

  24. S. Moulinet, Rugosité et dynamique d’une ligne de contact sur un substrat désordonné, Thése de doctorat, 2003. https://tel.archives-ouvertes.fr/tel-00003202/document

  25. E. Bormashenko, A. Musin, G. Whyman, Z. Barkay, M. Zinigrad, Eur. Phys. J. E 38, 2 (2015)

    Article  Google Scholar 

  26. E. Bormashenko, A. Musin, R. Grynyov, Sci. Rep. 4, 6243 (2014)

    Article  ADS  Google Scholar 

  27. A. Be’er, Y. Lereah, H. Taitelbaum, Phys. A 285, 156 (2000)

    Article  Google Scholar 

  28. A. Be’er, Y. Lereah, I. Hecht, H. Taitelbaum, Phys. A 302, 297 (2001)

    Article  Google Scholar 

  29. A. Be’er, Y. Lereah, A. Frydman, H. Taitelbaum, Phys. A 314, 325 (2002)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

All authors have contributed equally to this work.

Corresponding author

Correspondence to Stanimir Iliev.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Iliev, S., Pesheva, N. & Iliev, P. Dependence of the contact line roughness exponent on the contact angle on substrates with dilute mesa defects: numerical study. Eur. Phys. J. E 45, 66 (2022). https://doi.org/10.1140/epje/s10189-022-00220-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epje/s10189-022-00220-3

Navigation