Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Sub-50-ns ultrafast upconversion luminescence of a rare-earth-doped nanoparticle

Abstract

Rare-earth-doped upconversion nanoparticles are attracting considerable attention because of their stable, coherent, narrowband and multi-colour luminescence, which features less dephasing effects, crosstalk, photo-blinking and photo-bleaching compared with quantum dots and organic dyes. However, due to the 4f–4f forbidden transitions of rare-earth ions, upconversion nanoparticles exhibit long luminescence decay times, ranging from microseconds to milliseconds, restricting their application in time-dependent nanophotonic devices. Here we fabricate a tilted plasmonic nanocavity to shorten the luminescence decay time of a rare-earth-doped nanoparticle to sub-50 ns while maintaining high quantum efficiency enhancement, tunable polarization-dependent and far-field directional emissions and selective polychromatic chirality. We expect this new type of ultrafast, directional and polarized luminescence of a rare-earth-doped nanoparticle to vigorously promote the development of coherent single-photon sources, quantum communications and nanolasers.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Design of a tilted-nanocavity-coupled UCNP for sub-50-ns, directional and polarized emission.
Fig. 2: The upconversion process is significantly accelerated and enhanced using the tilted-plasmonic nanocavity.
Fig. 3: Far-field directional, polarized and ESA-enhanced UCL.
Fig. 4: Chiral control for UCL.

Similar content being viewed by others

Data availability

All the data that support the plots within this paper are available in the Zenodo repository48.

References

  1. Han, S., Deng, R., Xie, X. & Liu, X. Enhancing luminescence in lanthanide-doped upconversion nanoparticles. Angew. Chem. Int. Ed. 53, 11702–11715 (2014).

    Article  Google Scholar 

  2. Lee, C. et al. Giant nonlinear optical responses from photon-avalanching nanoparticles. Nature 589, 230–235 (2021).

    Article  ADS  Google Scholar 

  3. Haase, M. & Schafer, H. Upconverting nanoparticles. Angew. Chem. Int. Ed. 50, 5808–5829 (2011).

    Article  Google Scholar 

  4. Kindem, J. M. et al. Control and single-shot readout of an ion embedded in a nanophotonic cavity. Nature 580, 201–204 (2020).

    Article  ADS  Google Scholar 

  5. Dibos, A. M., Raha, M., Phenicie, C. M. & Thompson, J. D. Atomic source of single photons in the telecom band. Phys. Rev. Lett. 120, 243601 (2018).

    Article  ADS  Google Scholar 

  6. Alizadehkhaledi, A., Frencken, A. L., van Veggel, F. C. J. M. & Gordon, R. Isolating nanocrystals with an individual erbium emitter: a route to a stable single-photon source at 1,550-nm wavelength. Nano Lett. 20, 1018–1022 (2020).

    Article  ADS  Google Scholar 

  7. Sharifi, Z. et al. Isolating and enhancing single-photon emitters for 1,550-nm quantum light sources using double nanohole optical tweezers. J. Chem. Phys. 154, 184204 (2021).

    Article  ADS  Google Scholar 

  8. Yin, C. et al. Optical addressing of an individual erbium ion in silicon. Nature 497, 91–94 (2013).

    Article  ADS  Google Scholar 

  9. Zhong, M. et al. Optically addressable nuclear spins in a solid with a six-hour coherence time. Nature 517, 177–180 (2015).

    Article  ADS  Google Scholar 

  10. Song, C. et al. Upconversion nanoparticles for bioimaging. Nanotechnol. Rev. 6, 233–242 (2017).

    Article  Google Scholar 

  11. Zhang, C. et al. Self-suspended rare-earth doped up-conversion luminescent waveguide: propagating and directional radiation. Opto Electron. Adv. 3, 190045 (2020).

    Article  ADS  Google Scholar 

  12. Reimer, M. E. & Cher, C. The quest for a perfect single-photon source. Nat. Photon. 13, 734–736 (2019).

    Article  ADS  Google Scholar 

  13. Liu, Y. et al. Amplified stimulated emission in upconversion nanoparticles for super-resolution nanoscopy. Nature 543, 229–233 (2017).

    Article  ADS  Google Scholar 

  14. Shan, X. et al. Optical tweezers beyond refractive index mismatch using highly doped upconversion nanoparticles. Nat. Nanotechnol. 16, 531–537 (2021).

    Article  ADS  Google Scholar 

  15. Chen, H. et al. Multiplasmons-pumped excited-state absorption and energy transfer upconversion of rare-earth-doped luminescence beyond the diffraction limit. ACS Photonics 8, 1335–1343 (2021).

    Article  Google Scholar 

  16. Thomas, S. & Senellart, P. The race for the ideal single-photon source is on. Nat. Nanotechnol. 16, 367–368 (2021).

    Article  ADS  Google Scholar 

  17. Sun, S., Kim, H., Luo, Z., Solomon, G. S. & Waks, E. A single-photon switch and transistor enabled by a solid-state quantum memory. Science 361, 57–60 (2018).

    Article  ADS  Google Scholar 

  18. Oulton, R. F. et al. Plasmon lasers at deep subwavelength scale. Nature 461, 629–632 (2009).

    Article  ADS  Google Scholar 

  19. Chen, D., He, R., Cai, H., Liu, X. & Gao, W. Chiral single-photon generators. ACS Nano 15, 1912–1916 (2021).

    Article  Google Scholar 

  20. Wang, Y. et al. Stable, high-performance sodium-based plasmonic devices in the near infrared. Nature 581, 401–405 (2020).

    Article  ADS  Google Scholar 

  21. Tomm, N. et al. A bright and fast source of coherent single photons. Nat. Nanotechnol. 16, 399–403 (2021).

    Article  ADS  Google Scholar 

  22. Lassiter, J. B. et al. Plasmonic waveguide modes of film-coupled metallic nanocubes. Nano Lett. 13, 5866–5872 (2013).

    Article  ADS  Google Scholar 

  23. Hutter, E. & Fendler, J. H. Exploitation of localized surface plasmon resonance. Adv. Mater. 16, 1685–1706 (2004).

    Article  Google Scholar 

  24. Zayats, A. V., Smolyaninov, I. I. & Maradudin, A. A. Nano-optics of surface plasmon polaritons. Phys. Rep. 408, 131–314 (2005).

    Article  ADS  Google Scholar 

  25. Drexhage, K. H. Influence of a dielectric interface on fluorescence decay time. J. Lumin. 1-2, 693–701 (1970).

    Article  Google Scholar 

  26. Drexhage, K. H. IV Interaction of light with monomolecular dye layers. Prog. Opt. 12, 163–232 (1974).

    Article  ADS  Google Scholar 

  27. Moreau, A. et al. Controlled-reflectance surfaces with film-coupled colloidal nanoantennas. Nature 492, 86–89 (2012).

    Article  ADS  Google Scholar 

  28. Hoang, T. B., Akselrod, G. M. & Mikkelsen, M. H. Ultrafast room-temperature single photon emission from quantum dots coupled to plasmonic nanocavities. Nano Lett. 16, 270–275 (2016).

    Article  ADS  Google Scholar 

  29. Fernandez-Bravo, A. et al. Ultralow-threshold, continuous-wave upconverting lasing from subwavelength plasmons. Nat. Mater. 18, 1172–1176 (2019).

    Article  ADS  Google Scholar 

  30. Kim, J. et al. Measuring 3D orientation of nanocrystals via polarized luminescence of rare-earth dopants. Nat. Commun. 12, 1943 (2021).

    Article  ADS  Google Scholar 

  31. Purcell, E. M., Torrey, H. C. & Pound, R. V. Resonance absorption by nuclear magnetic moments in a solid. Phys. Rev. 69, 37–38 (1946).

    Article  ADS  Google Scholar 

  32. Baumberg, J. J., Aizpurua, J., Mikkelsen, M. H. & Smith, D. R. Extreme nanophotonics from ultrathin metallic gaps. Nat. Mater. 18, 668–678 (2019).

    Article  ADS  Google Scholar 

  33. Rose, A. et al. Control of radiative processes using tunable plasmonic nanopatch antennas. Nano Lett. 14, 4797–4802 (2014).

    Article  ADS  Google Scholar 

  34. Wurth, C. et al. Metasurface enhanced sensitized photon upconversion: toward highly efficient low power upconversion applications and nanoscale E-field sensors. Nano Lett. 20, 6682–6689 (2020).

    Article  ADS  Google Scholar 

  35. Wu, Y. et al. Upconversion superburst with sub-2-μs lifetime. Nat. Nanotechnol. 14, 1110–1115 (2019).

    Article  ADS  Google Scholar 

  36. Das, A., Mao, C., Cho, S., Kim, K. & Park, W. Over 1,000-fold enhancement of upconversion luminescence using water-dispersible metal–insulator–metal nanostructures. Nat. Commun. 9, 4828 (2018).

    Article  ADS  Google Scholar 

  37. Zhang, W., Ding, F. & Chou, S. Y. Large enhancement of upconversion luminescence of NaYF4:Yb3+/Er3+ nanocrystal by 3D plasmonic nano-antennas. Adv. Mater. 24, OP236–OP241 (2012).

    Google Scholar 

  38. Zhang, T. T. et al. Controlled multichannel surface plasmon polaritons transmission on atomic smooth silver triangular waveguide. Adv. Opt. Mater. 7, 1900930 (2019).

    Article  Google Scholar 

  39. Sakurai, J. J. & Napolitano, J. Modern Quantum Mechanics 2nd edn (Cambridge Univ. Press, 2017).

  40. Pelton, M. Modified spontaneous emission in nanophotonic structures. Nat. Photon. 9, 427–435 (2015).

    Article  ADS  Google Scholar 

  41. Pollnau, M., Gamelin, D. R., Luthi, S. R., Gudel, H. U. & Hehlen, M. P. Power dependence of upconversion luminescence in lanthanide and transition-metal-ion systems. Phys. Rev. B 61, 3337–3346 (2000).

    Article  ADS  Google Scholar 

  42. Xu, W., Chen, X. & Song, H. W. Upconversion manipulation by local electromagnetic field. Nano Today 17, 54–78 (2017).

    Article  Google Scholar 

  43. Lunkley, J. L., Shirotani, D., Yamanari, K., Kaizaki, S. & Muller, G. Extraordinary circularly polarized luminescence activity exhibited by cesium tetrakis(3-heptafluoro-butylryl-(+)-camphorato) Eu(III) complexes in EtOH and CHCl3 solutions. J. Am. Chem. Soc. 130, 13814–13815 (2008).

    Article  Google Scholar 

  44. Hu, H., Chen, W., Han, X., Wang, K. & Lu, P. Plasmonic nanobar-on-mirror antenna with giant local chirality: a new platform for ultrafast chiral single-photon emission. Nanoscale 14, 2287–2295 (2022).

    Article  Google Scholar 

  45. Sun, J., Hu, H., Pan, D., Zhang, S. & Xu, H. Selectively depopulating valley-polarized excitons in monolayer MoS2 by local chirality in single plasmonic nanocavity. Nano Lett. 20, 4953–4959 (2020).

    Article  ADS  Google Scholar 

  46. Li, Z. & Zhang, Y. An efficient and user-friendly method for the synthesis of hexagonal-phase NaYF4:Yb, Er/Tm nanocrystals with controllable shape and upconversion fluorescence. Nanotechnology 19, 345606 (2008).

    Article  Google Scholar 

  47. Johnson, P. B. & Christy, R. W. Optical constants of the noble metals. Phys. Rev. B 6, 4370–4379 (1972).

    Article  ADS  Google Scholar 

  48. Huan C. et al. Sub-50-ns ultrafast upconversion luminescence of a rare earth doped nanoparticle. Zenodo (2022); https://doi.org/10.5281/zenodo.6579210

Download references

Acknowledgements

We thank X. Gan (Northwestern Polytechnical University) for great assistance with FIB morphology characterization. This work was supported by the National Natural Science Foundation of China (grants nos. 92150110, 92050112, 12074237 and 12004233), the Natural Key R&D Program of China (grants nos. 2020YFA0211300 and 2021YFA1201500) and the Fundamental Research Funds for Central Universities (grants nos. GK202201012, GK202103018 and SYJS202222).

Author information

Authors and Affiliations

Authors

Contributions

Z.Z. conceived the concept. Z.Z., H.Z. and H.X. supervised the work. H.C. conceived and performed the experiment. Z.J., B.K. and H.H. performed the FEM simulation. X.M. and L.G. contributed to chemical syntheses. B.Z., L.Y., C.Z. and J. Li contributed to spectroscopy measurements. J. Lu contributed to TEM characterizations. H.C., Z.Z., Z.F. and H.H. analysed the results. H.C. wrote the manuscript, and all authors revised the manuscript.

Corresponding authors

Correspondence to Zhenglong Zhang or Hairong Zheng.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Photonics thanks Andries Meijerink, Markus Suta and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–28, Discussion and Tables 1–5.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, H., Jiang, Z., Hu, H. et al. Sub-50-ns ultrafast upconversion luminescence of a rare-earth-doped nanoparticle. Nat. Photon. 16, 651–657 (2022). https://doi.org/10.1038/s41566-022-01051-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41566-022-01051-6

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing