Skip to main content

Advertisement

Log in

High temperature, predation, nutrient, and food quality drive dominance of small-sized zooplankton in Neotropical lakes

  • Research Article
  • Published:
Aquatic Sciences Aims and scope Submit manuscript

Abstract

Body size plays a key role in the functioning of communities and ecosystems. However, this ecological trait is commonly under strong selection pressure by environmental drivers, such as temperature, nutrients, predation, and food quality. Understanding how environmental factors interact to shape the body size structure of communities is, therefore, of fundamental and applied interest. Using a unique database from 12 Neotropical lakes, we quantified the community-weighted mean trait (CWM) of zooplankton body size. We investigated how temperature, total phosphorus, abundance of predators (planktivorous fish) and food availability (abundance of edible and inedible algae) affect CWM of zooplankton body size. We also analyzed the interactions among these environmental predictors, and their cascading effects on zooplankton body size. We found that planktivorous fish, inedible algae, and edible algae had strong direct impacts on CWM of zooplankton body size. In particular, planktivorous fish and inedible algae decreased the CWM of body size, whereas edible algae increased it. Temperature and total phosphorus indirectly affected CWM of body size by increasing the abundance of planktivorous fish and inedible algae, and decreasing the abundance of edible algae. Our findings illustrate that environmental factors act in combination and affect zooplankton body size through multiple pathways. Therefore, focusing on the interaction between environmental predictors rather than just their isolated effects may provide a more mechanistic understanding of how environmental changes drive the body size structure of biotic communities.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Availability of data and materials

The data sets generated for this study are available on request to the corresponding author.

Code availability

Statistic R codes for this study are available on request to the corresponding author.

References

  • Agostinho AA, Gomes LC, Veríssimo S, Okada EK (2004) Food regime, dam regulation and fish in the Upper Paraná River: effects on assemblage attributes, reproduction and recruitment. Rev Fish Biol Fisher 14:11–19

    Article  Google Scholar 

  • Atkinson D, Morley SA, Hughes RN (2006) From cells to colines: at what levels of body organization does the “temperature-size rule” apply? Evol Dev 8:202–214

    Article  PubMed  Google Scholar 

  • Azevedo F, Bonecker CC (2003) Community size structure of zooplanktonic assemblages in three lakes on the upper River Parana floodplain, PR-MS, Brazil. Hydrobiologia 505:147–158

    Article  Google Scholar 

  • Bicudo CE, Menezes M (2006) Gêneros de algas de águas continentais do Brasil. Chave para identificação e descrições. Editora Rima, Brazil

  • Bonecker CC, Azevedo F, Simões RN (2011) Zooplankton body-size structure and biomass in tropical floodplain lakes: relationship with planktivorous fishes. Act Limnol Bras 23:217–228

    Article  Google Scholar 

  • Bouraï L, Maxime L, Leplace-Treyture C, Argillier C (2020) How do eutrophication and temperature interact to shape the community structures of phytoplankton a fish in lakes? Water 12:1–17

    Article  Google Scholar 

  • Braghin LSM, Almeida BA, Amaral DC, Canella TF, Gimenez BCG, Bonecker CC (2018) Effects of dams decrease zooplankton functional β-diversity in river-associated lakes. Freshwater Biol 63:721–730

    Article  Google Scholar 

  • Braz JE, Dias JD, Bonecker CC, Simões RN (2020) Oligotrophication affects the size structure and potential ecological interactions of planktonic microcrustaceans. Aquat Sci 82:59

    Article  CAS  Google Scholar 

  • Brooks JL, Dodson SI (1965) Predation, body size, and composition of plankton. Science 150:28–35

    Article  CAS  PubMed  Google Scholar 

  • Brookshire ENJ, Gerber S, Webster JR, Vose JM, Swank WT (2011) Direct effects of temperature on forest nitrogen cycling revealed through analysis of long-term watershed records. Glob Change Biol 17:297–308

    Article  Google Scholar 

  • Brown JH, Gillooly JF, Allen AP, Savage VM, West GB (2004) Toward a metabolic theory of ecology. Ecology 85:1771–1789

    Article  Google Scholar 

  • Brucet S, Boix D, Quintana XD, Jensen E, Nathansen LW, Trochine C, Meerhoff M, Gascón S, Jeppesen E (2010) Factors influencing zooplankton size structure at contrasting temperatures in coastal shallow lakes: implications for effects of climate change. Limnol Oceanogr 55:1697–1711

    Article  Google Scholar 

  • Butchart SHM et al (2010) Global biodiversity: indicators of recent declines. Science 328:1164–1168

    Article  CAS  PubMed  Google Scholar 

  • Carniatto N, Cunha ER, Thomaz SM, Quirino BA, Fugi R (2020) Feeding of fish inhabiting native and non-native macrophyte stands in a Neotropical reservoir. Hydrobiologia 847:1553–1563

    Article  Google Scholar 

  • Carpenter SR, Cole JL, Hodgson JR et al (2001) Trophic cascades, nutrients, and lake productivity: whole-lake experiments. Ecol Monogr 71:163–186

    Article  Google Scholar 

  • Daufresne M, Lengfellner K, Sommer U (2009) Global warming benefits the small in aquatic ecosystems. Proc Natl Acad Sci USA 106:12788–12793

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Enquist BJ, Norberg J, Bonser SP, Violle C, Webb CT, Handerson A, Sloat LL, Savage VM (2015) Scaling from traits to ecosystems: developing a genetal trait driver theory via integrating trait-based and metabolic scaling theories. Adv Ecol Res 52:249–318

    Article  Google Scholar 

  • Ersoy Z, Brucet S, Beatrons M, Mehner T (2019) Short-term fish predation destroys resilience of zooplankton communities and prevents recovery of phytoplankton control by zooplankton grazing. PLoS ONE 14:e0212351

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Evans LE, Hirst AG, Kratina P, Beaugrand G (2020) Temperature-mediated changes in zooplankton body size: large scale temporal and spatial analysis. Ecography 43:581–590

    Article  Google Scholar 

  • Gardner JL, Peters A, Kearney MB, Joseph L, Heinsohn R (2011) Declining body size: a third universal response to warming? Trends Ecol Evol 26:285–291

    Article  PubMed  Google Scholar 

  • Ger KA, Hansson L-A, Lürling M (2014) Understanding cyanobacteria-zooplankton interactions in a more eutrophic world. Freshwater Biol 59:1783–1798

    Article  Google Scholar 

  • Ghadouani A, Pinel-Alloul B, Prepas EE (2003) Effects of experimental induced cyanobacterial blooms on crustacean zooplankton communities. Freshwater Biol 48:363–381

    Article  Google Scholar 

  • Gilbert JJ (1988) Suppression of rotifer populations by Daphnia: a review of the evidence, the mechanisms, and the effects on zooplankton community structure. Limnol Oceanogr 33:1286–1303

    Article  Google Scholar 

  • Gliwicz ZM (1990) Why do cladocerans fail to control algal blooms? Hydrobiologia 201:83–97

    Article  Google Scholar 

  • Golterman HL, Clymo RS, Ohmstad MAM (1978) Methods for physical and chemical analysis of freshwater. Blackwell Scientific, Oxford, 214p

    Google Scholar 

  • Grace JB (2006) Structural equation modeling and natural systems. Cambridge University Press, New York

    Book  Google Scholar 

  • Greve M, Gaston KJ, Rensburg BJV, Chown SL (2008) Environmental factors, regional body size distributions and spatial variation in body size of local avian assemblages. Global Ecol Biogeogr 17:514–523

    Article  Google Scholar 

  • Hautier Y, Niklaus PA, Hector A (2009) Competition for light causes plant biodiversity loss after eutrophication. Science 324:636–638

    Article  CAS  PubMed  Google Scholar 

  • Havens KE, Beaver JR (2011) Body size versus taxonomy in relating zooplankton to water quality in lakes. Inland Waters 1:107–112

    Article  Google Scholar 

  • Havens KE, Pinto-Coelho RM, Beklioğlu M et al (2015) Temperature effects on body size of freshwater crustacean zooplankton from Greenland to the tropics. Hydrobiologia 743:27–35

    Article  CAS  Google Scholar 

  • Hébert MP, Beisner BE, Maranger R (2017) Linking zooplankton communities to ecosystem functioning: toward an effect-trait framework. J Plankton Res 39(1):3–12

    Article  Google Scholar 

  • Hildrew AG, Raffaelli DG, Edmonds-Brown R (eds) (2007) Body size: the structure and function of aquatic ecosystems. Cambridge University Press, Cambridge

    Google Scholar 

  • Hiltunen M, Vehniäinen E-R, Kukkonen JVK (2021) Interacting effects of simulated eutrophication, temperature increase, and microplastic exposure on Daphnia. Environ Res 192:110304

    Article  CAS  PubMed  Google Scholar 

  • Hsieh CH, Sakai Y, Ban S, Ishikawa K, Ishikawa T, Ichise S, Yamamura N, Kumagai M (2011) Eutrophication and warming effects on long-term variation of zooplankton in lake Biwa. Biogeosciences 8:1383–1399

    Article  CAS  Google Scholar 

  • Hutchinson GE (1959) Homage to Santa Rosalia or why are there so many kinds of Animals? Am Nat 93:145–159

    Article  Google Scholar 

  • Iglesias C, Mazzeo N, Meerhoff M, Lacerot G et al (2011) High predation is of key importance for dominance of small-bodied zooplankton in warm shallow lakes: evidence drom lakes, fish exclosures and surface sediments. Hydrobiologia 667:133–147

    Article  Google Scholar 

  • IPCC (2014). Climate Change 2014: Synthesis Report. Contribution of Working Groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change (eds Core Writing Team, Pachauri RK., Meyer LA). IPCC, Geneva, Switzerland, pp. 151

  • Jeppesen E, Jensen JP, Søndergaard M, Lauridsen T, Landkildehus F (2000) Trophic structure, species richness and biodiversity in Danish lakes: changes along a phosphorus gradient. Freshwater Biol 45:201–218

    Article  CAS  Google Scholar 

  • Jeppesen E, Meerhoff M, Jacobsen BA, Hansen RS, Søndergaard M, Jensen JP, Lauridsen TL, Mazzeo N, Branco CWC (2007) Restoration of shallow lakes by nutrient control and biomanipulation–the successful strategy varies with lake size and climate. Hydrobiologia 581:269–285

    Article  CAS  Google Scholar 

  • Jeppesen E, Kronvang B, Meerhoff M et al (2009) Climate change effects on runoff, catchment phosphorus loading and lake ecological state, and potential adaptations. J Environ Qual 38:1930–1941

    Article  CAS  PubMed  Google Scholar 

  • Karpowicz M, Slugocki L, Kozlowska J, Ochocka A, López C (2020) Body size of Daphnia cucullata as an indicator of the ecological status of temperate lakes. Ecol Indic 117:106585

    Article  Google Scholar 

  • Lansac-Tôha FA, Bonecker CC, Velho LFM, Simões NR, Dias JD, Alves GM, Takahashi EM (2009) Biodiversity of zooplankton communities in the Upper Paraná Ríver floodplain: interannual variation from long-term studies. Braz J Biol 69:539–549

    Article  PubMed  Google Scholar 

  • Lefcheck JS (2016) piecewiseSEM: piecewise, structural equation modelling in R for ecology, evolution and systematics. Method Ecol Evol 7:573–579

    Article  Google Scholar 

  • Li Y, Chen F (2020) Are zooplankton useful indicators of water quality in subtropical lakes with high human impacts? Ecol Indic 113:106167

    Article  CAS  Google Scholar 

  • Li Y, Xie P, Zhang J, Tao M, Deng X (2017) Effects of filter-feeding planktivorous fish and cyanobacteria on structuring the zooplankton community in the eastern plain lakes of China. Ecol Eng 99:238–245

    Article  Google Scholar 

  • Lürling M, Eshetu F, Elisabeth JF, Kosten S, Huszar VLM (2013) Comparison of cyanobacterial and green algal growth rates at different temperatures. Freshwater Biol 58:552–559

    Article  Google Scholar 

  • Meerhoff M, Iglesias C, Teixeira-de Mello F, Clemente JM, Jensen E, Lauridsen TL, Jeppesen E (2007) Effects of habitat complexity on community structure and predator avoidance behaviour of littoral zooplankton in temperate versus subtropical shallow lakes. Freshwater Biol 52:1009–1021

    Article  Google Scholar 

  • Meerhoff M, Teixeira-de Mello F, Kruk C et al (2012) Environmental warming in shallow lakes: a review of potential changes in community structure as evidenced from space-for-time substitution approaches. Adv Ecol Res 46:259–349

    Article  Google Scholar 

  • Moi DA, Alves DC, Antiqueira PAP, Thomas SM, Teixeira de Mello F, Bonecker CC, Rodrigues LC, García-Ríos R, Mormul RP (2021a) Ecosystem shift from submerged to floating plants simplifying the food web in a tropical shallow lake. Ecosystems 24:628–639

    Article  Google Scholar 

  • Moi DA, Romero GQ, Antiqueira PAP, Mormul RP, Teixeira de Mello F, Bonecker CC (2021b) Multitrophic richness enhances ecosystem multifunctionality of tropical shallow lakes. Funct Ecol 35:942–954

    Article  CAS  Google Scholar 

  • Mormul RP, Thomaz SM, Agostinho AA, Bonecker CC, Mazzeo N (2012) Migratory benthic fishes may induce regime shifts in a tropical floodplain pond. Freshwater Biol 57:1592–1602

    Article  Google Scholar 

  • Moss B, Kosten S, Meerhoff M et al (2011) Allied attack: climate change and eutrophication. Inland Waters 1(2):101–105

    Article  Google Scholar 

  • Olobatuyi ME (2006) A user’s guide to path analysis. University Press of America, Lanham, MD

    Google Scholar 

  • Onandia G, Didas JD, Miracle MR (2015) Zooplankton grazing on natural algae and bacteria under hypertrophic conditions. Limnetica 34:541–560

    Google Scholar 

  • Ota RR, Deprá GC, da Graça WJ, Pavanelli CS (2018) Peixes da planície de inundação do alto rio Paraná e áreas adjacentes: Revised, annotated and updated. Neotrop Ichthyol 16:e170094

    Article  Google Scholar 

  • Paerl HW, Huisman J (2008) Blooms like it hot. Science 320:57–58

    Article  CAS  PubMed  Google Scholar 

  • Parra G, Matias NG, Guerrero F, Boavida MJ (2009) Short term fluctuations of zooplankton abundance during autumn circulation in two reservoirs with contrasting trophic state. Limnetica 28:175–184

    Article  Google Scholar 

  • Pinheiro J, Bates D, R Core Team (2022) Nlme: Linear and Nonlinear Mixed Effects Models. R package version 3.1–158. https://CRAN.R-project.org/package=nlme

  • Provost G, Badenhausser I, Bagousse-Pinguet Y, Clough Y, Henckel L, Violle C, Bretagnolle V, Roncoroni M, Manning P, Gross N (2020) Land-use history impacts functional diversity across multiple trophic groups. Proc Natl Acad Sci USA 117:1573–1579

    Article  PubMed  PubMed Central  Google Scholar 

  • Quirino BA, Teixeira de Melo F, Deosti S, Bonecker CC, Cardozo ALP, Yofukuji KY, Aleixo MHF, Fugi R (2021) Interactions between a planktivorous fish and planktonic microcrustaceans mediated by the biomass of aquatic macrophytes. J Plankton Res 43:1–15

    Article  Google Scholar 

  • R Core Team (2021) R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. https://www.R-project.org/.

  • Roberto MC, Santana NF, Thomaz SM (2009) Limnology in the Upper Paraná River floodplain: large-scale spatial and temporal patterns, and the influence of reservoirs. Braz J Biol 69:717–725

    Article  CAS  PubMed  Google Scholar 

  • Santana-Porto EA, Andrian IF (2009) Trophic organization the ichthyofauna of two semilentic environments in a flood plain on the upper Paraná River, Brazil. Acta Limnol Bras 21:359–366

    Google Scholar 

  • Schielzeth H (2010) Simple means to improve the interpretability of regression coefficients. Methods Ecol Evol 1:103–113

    Article  Google Scholar 

  • Segovia BT, Pereira DG, Bini LM, Meira BR, Nishida VS, Lansac-Tôha FA, Velho LFM (2015) The role of microorganisms in a planktonic food web of a floodplain lake. Microb Ecol 69:225–233

    Article  PubMed  Google Scholar 

  • Sha Y, Tesson SVM, Hansson L-A (2020) Diverging responses to threats across generations in zooplankton. Ecology 101(11):e03145

    Article  PubMed  Google Scholar 

  • Shurin JB, Gruner DS, Hillebrand H (2006) All wet or dried up? Real differences between aquatic and terrestrial food webs. P Roy Soc B-Biol Sci 273:1–9

    Google Scholar 

  • Sikora AB, Petzoldt T, Dawidowicz P, von Elert E (2016) Demands of eicosapentaenoic acid (EPA) in Daphnia: are they dependent of body size? Oecologia 182:405–417

    Article  PubMed  PubMed Central  Google Scholar 

  • Sodré EO, Bozelli RL (2019) How planktonic microcrustaceans respond to environment and affect ecosystem: a functional trait perspective. Int Aquat Res 11:207–223

    Article  Google Scholar 

  • Suikkanen S, Pulina S, Engström-öst J, Lehtiniemi M, Lehtinen S, Brutemark A (2013) Climate change and eutrophication induced shifts in northern summer plankton communities. PlosOne 8:e66475

    Article  CAS  Google Scholar 

  • Sun X, Tao M, Qin B, Qi M, Niu Y, Zhang J, Ma Z, Xie P (2012) Large-scale field evidence on the enhancement of small-sized cladocerans by Microcystis blooms in Lake Taihu, China. J Plankton Res 34:853–863

    Article  Google Scholar 

  • Teixeira de Mello F, Meerhoff M, Pekcan-Hekim Z, Jeppesen E (2009) Substantial differences in litoral fish community structure and dynamics in subtropical and temperate shallow lakes. Freshwater Biol 54:1202–1215

    Article  CAS  Google Scholar 

  • Utermohl H (1958) Zur Ver vollkommnung der quantitativen phytoplankton methodik. Mitt Int Ver Theor Angew Limnol 9:1–38

    Google Scholar 

  • Vehmaa A, Katajisto T, Candolin U (2018) Long-term changes in a zooplankton community revealed by the sediment archive. Limnol Oceanogr 63:2126–2139

    Article  Google Scholar 

  • Visser PM, Verspagen JMH, Sandrini G, Stal LJ, Matthijs HCP, Davis TW, Paerl HW, Huisman J (2016) How rising CO2 and global warming may stimulate harmful cyanobacterial blooms. Harmful Algae 54:145–159

    Article  CAS  PubMed  Google Scholar 

  • Wang S, Wang T-T, Lin H-J, Stewart SD, Cheng G, Li W, Yang F-J, Huang W-D, Chen Z-B, Xie S-G (2021) Impacts of environmental factors on the food web structure, energy flows, and system attributes along a subtropical urban river in southern China. Sci Total Environ 794:148673

    Article  CAS  PubMed  Google Scholar 

  • White EP, Ernest SKM, Kerkhoff AJ, Enquist BJ (2007) Relationships between body size and abundance in ecology. Trends Ecol Evol 22:323–330

    Article  PubMed  Google Scholar 

  • Yang J, Yu X, Liu L, Zhang W, Guo P (2012) Algae community and trophic state of subtropical reservoirs in southeast Fujian, China. Environ Sci Pollut Res 19:1432–1442

    Article  CAS  Google Scholar 

  • Zhang H, Hollander J, Hansson L-A (2017) Bi-directional plasticity: rotifer prey adjust spine length to different predator regimes. Sci Rep 7:10254

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

DAC received a scholarship from the Coordination for the Improvement of Higher Education Personnel (CAPES). DAM received a scholarship from the Brazilian National Council of Research and Development (CNPq). NRS, FA, and CCB received CNPq Brazil productivity research grants. The authors declare that there is no conflict of interests.

Funding

This manuscript was supported by Brazilian National Council for Scientific and Technological Development (CNPq).

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to study conception and design; DAC, NRS, and FA: collected data; DAM: analyzed data; all authors wrote the manuscript.

Corresponding author

Correspondence to Dieison André Moi.

Ethics declarations

Conflict of interest

The authors declare that there is no conflict of interest.

Ethics approval

Not applicable.

Consent to participate

All author consent to participation.

Consent for publication

All author consent for publication.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 522 KB)

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

das Candeias, D.A., Moi, D.A., Simões, N.R. et al. High temperature, predation, nutrient, and food quality drive dominance of small-sized zooplankton in Neotropical lakes. Aquat Sci 84, 49 (2022). https://doi.org/10.1007/s00027-022-00881-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00027-022-00881-4

Keywords

Navigation