Skip to main content
Log in

Very small size capacitive DMTL phase shifters using a new approach

  • Technical Paper
  • Published:
Microsystem Technologies Aims and scope Submit manuscript

Abstract

Very small size Ka-band two-bit and K-band six-bit capacitive DMTL phase shifters are designed, calculated and simulated using a new approach. It is done based on information in the return loss diagram. The equations related to the resonance frequencies in the return loss diagram are extracted from the input impedance poles. It is due to the same resonance frequencies of return loss and input impedance diagrams in the linear region. Around these resonance frequencies, it is possible to have a high phase shift and small size together with acceptable return loss. The total proposed two and six-bit phase shifters length are 1.8 mm and 5 mm, respectively. These lengths are the smallest size among the two and six-bit capacitive DMTL phase shifters till now. Moreover, cantilever beam switches with low actuation voltage are used in two-bit phase shifter due to their compatibility with the integrated circuits. The equations-based calculated results are again calculated and simulated in MATLAB and HFSS softwares, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19

Similar content being viewed by others

References

  • Afrang S, Majlis BY (2008) Distributed transmission line phase shifter using MEMS switches and inductors. Microsyst Technol 14(8):1173–1183. https://doi.org/10.1007/s00542-008-0637-9

    Article  Google Scholar 

  • Afrang S, Samandari K, Rezazadeh G (2017) A small size Ka band six-bit DMTL phase shifter using new design of MEMS switch. Microsyst Technol 23(6):1853–1866. https://doi.org/10.1007/s00542-016-2987-z

    Article  Google Scholar 

  • Allevato G, Hinrichs J, Großkurth D, Rutsch M, Adler J, Jäger A, Pesavento M, Kupnik M, Grosskurth D, Rutsch M, Adler J, Jäger A, Pesavento M, Kupnik M (2019) 3D imaging method for an air-coupled 40 kHz ultrasound phased-array. Univ RWTH Aachen. https://doi.org/10.18154/RWTH-CONV-238964

    Article  Google Scholar 

  • Bharadwaj PM, Kathavathe AR, Sandarsh MK, Hegde R, Kumar S (2020) MIMO versus phased array antenna systems for 5G mobile communication systems. Perspect Commun Embedded-Syst Signal-Process-PiCES 4(4):64–68

    Google Scholar 

  • Çağlayan Z, Demircan Yalçın Y, Külah H, Çăglayan Z, Yalçın YD, Külah H (2020) A prominent cell manipulation technique in BioMEMS: dielectrophoresis. Micromachines 11(11):990. https://doi.org/10.3390/mi11110990

    Article  Google Scholar 

  • Chakraborty A, Gupta B (2017) Utility of RF MEMS miniature switched capacitors in phase shifting applications. AEU-Int J Electron Commun 75:98–107. https://doi.org/10.1016/j.aeue.2017.03.011

    Article  Google Scholar 

  • Chen A, Jiang W, Chen Z, Li Y (2013) A low-loss ka-band distributed metal-air-metal mems phase shifter. Przegląd Elektrotech 2013(7):77–80

    Google Scholar 

  • Cpw S, Lctik AD, Wu Q, Tang K, Feng Z-R, Sun F-L, Li L-W (2007) A DMTL phase shifter using insulation layer and saw-shaped CPW. In: 2007 Asia-Pacific microwave conference. IEEE, New York, pp 1–4

  • Daw AF, El-Dessouky MS, El-Hannawy AE, El Hady MM (2008) 2 GHz RF MEMS based microwave phase shifter with high resolution tuning. In: 2008 international conference on computer engineering & systems. IEEE, New York, pp 35–40

  • De Flaviis F, Alexopoulos NG, Stafsudd OM (1997) Planar microwave integrated phase-shifter design with high purity ferroelectric material. IEEE Trans Microw Theory Tech 45(6):963–969. https://doi.org/10.1109/22.588610

    Article  Google Scholar 

  • Dey S, Koul SK (2015) 10–25 GHz frequency reconfigurable MEMS 5-bit phase shifter using push–pull actuator based toggle mechanism. J Micromech Microeng 25(6):65011. https://doi.org/10.1088/0960-1317/25/6/065011

    Article  Google Scholar 

  • Dey S, Koul SK (2020) Reliable, compact, and tunable MEMS bandpass filter using arrays of series and shunt bridges for 28-GHz 5G applications. IEEE Trans Microw Theory Tech 69(1):75–88. https://doi.org/10.1109/TMTT.2020.3034182

    Article  Google Scholar 

  • Dragunov VP, Ostertak DI, Kiselev DE, Dragunova EV (2022) Impact-enhanced electrostatic vibration energy harvester. J Appl Comput Mech 8(2):671–683. https://doi.org/10.22055/jacm.2021.38781.3312

    Article  Google Scholar 

  • Du Y, Bao J, Zhao X (2010) 5-bit MEMS distributed phase shifter. Electron Lett 46(21):1452–1453. https://doi.org/10.1049/el.2010.2492

    Article  Google Scholar 

  • Du Y, Bao J, He Z, Jiang J (2013a) A X-band switched-line 5-bit phase shifter with RF MEMS multithrow switches. In: The 8th annual IEEE international conference on nano/micro engineered and molecular systems. IEEE, New York, pp 296–299

  • Du YJ, Bao JF, Jiang JW (2013b) A new design of multi-bit RF MEMS distributed phase shifters for phase error reduction. Microsyst Technol 19(2):237–244. https://doi.org/10.1007/s00542-012-1649-z

    Article  Google Scholar 

  • Elloian J (2021) Design of a flexible ultrasound phased array with adaptive phasing for curvature. Columbia University, Columbia

    Google Scholar 

  • Entesari K, Rebeiz GM (2005) A 12–18-GHz three-pole RF MEMS tunable filter. IEEE Trans Microw Theory Tech 53(8):2566–2571. https://doi.org/10.1109/TMTT.2005.852761

    Article  Google Scholar 

  • Fernandez-Bolanos M, Lisec T, Dainesi P, Ionescu AM (2008) Thermally stable distributed MEMS phase shifter for airborne and space applications. In: 2008 38th European microwave conference. IEEE, New York, pp 100–103

  • Hayden JS III (2002) High-performance digital X-band and Ka-band distributed MEMS phase shifters. University of Michigan, Michigan

    Google Scholar 

  • Hayden JS, Rebeiz GM (2003) Very low-loss distributed X-band and Ka-band MEMS phase shifters using metal-air-metal capacitors. IEEE Trans Microw Theory Tech 51(1):309–314. https://doi.org/10.1109/TMTT.2002.806520

    Article  Google Scholar 

  • Huang Y, Bao J, Li X, Wang Y, Du Y, Huang Y, Bao J, Li X, Wang Y, Du Y (2015) A 4-bit switched-line phase shifter based on MEMS switches. In: 10th IEEE international conference on nano/micro engineered and molecular systems. IEEE, New York, pp 405–408

  • Jian Z, Wei Y-YY, Chen C, Yong Z, Le L (2006) A compact 5-bit switched-line digital MEMS phase shifter. In: 2006 1st IEEE international conference on nano/micro engineered and molecular systems. IEEE, New York, pp 623–626

  • Jin L, Wu Q, Tang K, He X, Yang G, Fu J, Zhang R, Lee J (2008) A novel design of RF-MEMS phase shifter based on bridge-like coplanar waveguide. In: 2008 6th IEEE international conference on industrial informatics. IEEE, New York, pp 171–175

  • Kazakov SY, Shchelkunov SV, Yakovlev VP, Kanareykin A, Nenasheva E, Hirshfield JL (2010) Fast ferroelectric phase shifters for energy recovery linacs. Phys Rev Spec Top-Accelerators and Beams 13(11):113501. https://doi.org/10.1103/PhysRevSTAB.13.113501

    Article  Google Scholar 

  • Lacroix B, Pothier A, Crunteanu A, Blondy P (2008) Phase shifter design based on fast RF MEMS switched capacitors. In: 2008 European microwave integrated circuit conference. IEEE, New York, pp 478–481

  • Li X, Chan KY, Ramer R (2019) E-band RF MEMS differential reflection-type phase shifter. IEEE Trans Microw Theory Tech 67(12):4700–4713. https://doi.org/10.1109/TMTT.2019.2944623

    Article  Google Scholar 

  • Liu Y, Borgioli A, Nagra ASAS, York RARA, Liu Y, Nagra ASAS, York RARA (2000) Low-loss distributed MEMS phase shifter. IEEE Microw Guided Wave Lett 10(1):7–9. https://doi.org/10.1109/75.877230

    Article  Google Scholar 

  • Lou J, Hao J, Hu X, Li Q, Dai P (2010) Design and fabrication of 2-bit loaded-line MEMS phase shifter. In: 2010 international conference on microwave and millimeter wave technology. IEEE, New York, pp 1652–1654

  • Maruhashi K, Mizutani H, Ohata K, Fet UUA (1998) Ka-band 4-bit monolithic phase shifter using unresonated FET switches. IEEE MTT-S international microwave symposium digest (Cat. No. 98CH36192). IEEE 1998:51–54

    Google Scholar 

  • McFeetors G, Okoniewski M (2004) Analog tunable microwave phase shifters using RF MEMS. In: 2004 10th international symposium on antenna technology and applied electromagnetics and URSI conference. IEEE, New York, pp 1–4

  • Medina-Rull A, Pasadas F, Marin EG, Toral-Lopez A, Cuesta J, Godoy A, Jimélnez D, Ruiz FG, Jiménez D, Ruiz FG (2020) A graphene field-effect transistor based analogue phase shifter for high-frequency applications. IEEE Access 8:209055–209063. https://doi.org/10.1109/ACCESS.2020.3038153

    Article  Google Scholar 

  • Mishra MK, Dubey V, Mishra PM, Khan I (2019) MEMS technology: a review. J Eng Res Rep 4(1):1–24. https://doi.org/10.9734/jerr/2019/v4i116891

    Article  Google Scholar 

  • Nishimura K, Kao H-Y, Ishimura S, Tanaka K, Inohara R, Ishimura KON, Hsunk AO, Shimura SHI, Anaka KAT, Nohara RYOI (2022) Multiple beam-steering for 5G multi-user MIMO mobile fronthaul based on IFoF and RoF transmission. Opt Continuum 1(5):1165–1175

    Article  Google Scholar 

  • Pozar DM (2011) Microwave engineering. Wiley, New York

    Google Scholar 

  • Puri M, Das A, Sengar JS (2013) A novel design of monolithically integrated phased array antenna employing 4-bit dmtl phase shifter. In: 2013 Tenth international conference on wireless and optical communications networks (WOCN). IEEE, New York, pp 1–6

  • Qin Z, Liu X, Ma C (2021) Acoustic wave reflection control based on broadband differential phase shifters. Front Mech Eng 7:83. https://doi.org/10.3389/fmech.2021.703019

    Article  Google Scholar 

  • Ramli NA, Arslan T (2017) Design and simulation of a 2-bit distributed S-band MEMS phase shifter. In: 2017 18th international conference on thermal, mechanical and multi-physics simulation and experiments in microelectronics and microsystems (EuroSimE). IEEE, New York, pp 1–5

  • Rebeiz GM (2004) RF MEMS: theory, design, and technology. Wiley, New York

    Google Scholar 

  • Rebeiz GM, Barker NS (2000) Optimization of distributed MEMS transmission-line phase shifters-U-band and W-band designs. IEEE Trans Microw Theory Tech 48(11):1957–1966. https://doi.org/10.1109/22.883878

    Article  Google Scholar 

  • Rotake D, Darji A, Kale N (2020) Fabrication, calibration, and preliminary testing of microcantilever-based piezoresistive sensor for BioMEMS applications. IET Nanobiotechnol 14(5):357–368. https://doi.org/10.1049/iet-nbt.2019.0277

    Article  Google Scholar 

  • Sengar JS, Das A, Puri M. Design of 3-bit digital DMTL phase shifter for C-to Ku-band applications. In: 2013 third international conference on advances in computing and communications. IEEE, New York, pp 427–432

  • Shafai C, Shafai L, Sharma S, Chrusch DD (2003) Fabrication and testing of a microstrip phase shifter using micromachined reconfigurable ground plane. In: IEEE Antennas and Propagation Society international symposium. Digest. Held in conjunction with: USNC/CNC/URSI North American radio science meeting (Cat. No. 03CH37450). IEEE, New York, pp 274–277

  • Teymoori MM, Dousti M, Afrang S (2020) A low-loss compact six-bit DMTL phase shifter for phased array antenna applications. Int J Circuit Theory Appl 48(12):2111–2129. https://doi.org/10.1002/cta.2871

    Article  Google Scholar 

  • Trinh KT, Feng J, Shehab SH, Karmakar NC (2019) 1.4 GHz low-cost PIN diode phase shifter for \({L}\) -band radiometer antenna. IEEE Access 7:95274–95284. https://doi.org/10.1109/ACCESS.2019.2926140

    Article  Google Scholar 

  • Yang JG, Yang K (2011) Ka-band 5-bit MMIC phase shifter using InGaAs PIN switching diodes. IEEE Microwave Wirel Compon Lett 21(3):151–153. https://doi.org/10.1109/LMWC.2010.2104314

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Saeid Afrang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author (s) or other rightsholder (s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Afrang, O.R., Afrang, S. & Hamzah, A.A. Very small size capacitive DMTL phase shifters using a new approach. Microsyst Technol 28, 2107–2122 (2022). https://doi.org/10.1007/s00542-022-05354-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00542-022-05354-0

Navigation