Skip to main content
Log in

Microstructure and Micromechanical Properties of In situ Synthesized TiO2−x Coatings by Plasma Spraying of Bimodal Feedstocks

  • Peer Reviewed
  • Published:
Journal of Thermal Spray Technology Aims and scope Submit manuscript

Abstract

Magnéli phases TiO2−x have many excellent physical and chemical properties. While the preparation process of TiO2−x is costly and complicated. In situ synthesis of TiO2−x by deoxidation of TiO2 powders coupled with the deposition of the TiO2−x coating synchronously using plasma spraying can broaden the prospects in many industrial applications. This study attempts to relate the comprehensive properties of plasma-sprayed TiO2−x coating to phase and microstructural variances induced by deoxidation of the mixing nano-(n-TiO2) and submicron (m-TiO2) sprayable feedstocks. The phase constitution, microstructure, and micromechanical properties of the as-sprayed TiO2−x coatings are experimentally and systemically investigated. With the increase in m-TiO2 particles, more rutile phase transfers into Magnéli phases during coating preparation. The microstructure of coatings is mainly composed of two meta structures, including the fully melted region and the partially melted region. The measured data of the porosity, microhardness, elastic modulus, and fracture toughness follow Weibull distribution, and the micromechanical properties present a characteristic of bimodal distribution. With increasing m-TiO2 particles, the microhardness and elastic modulus of coatings decrease, whereas the fracture toughness greatly increases. In general, the comprehensive properties of the as-sprayed TiO2−x coating can be effectively improved by optimizing the feedstock structure and composition.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. H. Li, T. Zhou, S. Hu, Z. Su, and Y. Yan, Ti6O11 Nanofiber: A New Material with Robust Switching Characteristic for Memories, Chem. Eng. J., 2017, 312, p 328-335.

    Article  CAS  Google Scholar 

  2. F.C. Walsh and R. Wills, The Continuing Development of Magnéli Phase Titanium Sub-oxides and Ebonex Electrodes, Electrochim. Acta, 2010, 55, p 6342-6351.

    Article  CAS  Google Scholar 

  3. H.X.L. Wang, Carbon-Coated Magnéli-Phase TinO2n−1 Nanobelts as Anodes for Li-ion Batteries and Hybrid Electrochemical Cells, Appl. Phys. Lett., 2010, 97, p 862.

    Google Scholar 

  4. X. Li, A.L. Zhu, Q. Wei, H. Wang, R. Hui, Z. Lei, and J. Zhang, Magneli Phase Ti4O7 electrode for Oxygen Reduction Reaction and Its Implication for Zinc-Air rechargeable batteries, Electrochim. Acta, 2010, 55, p 5891-5898.

    Article  CAS  Google Scholar 

  5. K. Wen-Hong, Erratum: Formation Enhancement of a Lead/Acid Battery Positive Plate by Barium Metaplumbate and Ebonex, J. Electrochem. Soc., 1997, 144, p 1907-1911.

    Article  Google Scholar 

  6. T. Chao, D. Zhou, and Q. Zhang, Synthesis and Characterization of Magneli Phases: Reduction of TiO2 in a Decomposed NH3 Atmosphere, Mater. Lett., 2012, 79, p 42-44.

    Article  Google Scholar 

  7. H. Lee, J. Han Su, and R. Chidambaram Seshadri, Thermoelectric Properties of In-situ Plasma Spray Synthesized Sub-stoichiometry TiO2−x, Sci. Rep., 2016, 6, p 36581.

    Article  Google Scholar 

  8. F.R. Caliari, H. Lee, and S. Sampath, Optimization of All-Oxide 2D Layered Thermoelectric Device Fabricated by Plasma Spray, J. Therm. Spray Technol., 2020, 29, p 1815-1826.

    Article  CAS  Google Scholar 

  9. J.R. Colmenares-Angulo, V. Cannillo, L. Lusvarghi, A. Sola, and S. Sampath, Role of Process Type and Process Conditions on Phase Content and Physical Properties of thermal Sprayed TiO2 Coatings, J. Mater. Sci., 2009, 44, p 2276-2287.

    Article  CAS  Google Scholar 

  10. J. Zhang, J. He, Y. Dong, and X. Li, Microstructure Characteristics of Al2O3-13wt.% TiO2 Coating Plasma Spray Deposited with Nanocrystalline Powders, J. Mater. Process. Technol., 2008, 197, p 31-35.

    Article  CAS  Google Scholar 

  11. M. Gell, E.H. Jordan, Y.H. Sohn, D. Goberman, L. Shaw, and T.D. Xiao, Development and Implementation of Plasma Sprayed Nanostructured Ceramic Coatings, Surf. Coat. Technol., 2001, 146, p 48-54.

    Article  Google Scholar 

  12. D. Goberman, Y.H. Sohn, L. Shaw, E. Jordan, and M. Gell, Microstructure Development of Al2O3-13wt.% TiO2 Plasma Sprayed Coatings Derived from Nanocrystalline Powders, Acta Materialia, 2002, 50, p 1141-1152.

    Article  CAS  Google Scholar 

  13. M.J. Ghazali, S.M. Forghani, N. Hassanuddin, A. Muchtar, and A.R. Daud, Comparative Wear Study of Plasma Sprayed TiO2 and Al2O3-TiO2 on Mild Steels, Tribol. Int., 2016, 93, p 681-686.

    Article  CAS  Google Scholar 

  14. E.P. Song, J. Ahn, S. Lee, and N.J. Kim, Microstructure and Wear Resistance of Nanostructured Al2O3-8wt.%TiO2 Coatings Plasma-Sprayed with Nanopowders, Surf. Coat. Technol., 2006, 201, p 1309-1315.

    Article  CAS  Google Scholar 

  15. E. Klyatskina, E. Rayón, G. Darut, M.D. Salvador, E. Sánchez, and G. Montavon, A study of the Influence of TiO2 Addition in Al2O3 Coatings Sprayed by Suspension Plasma Spray, Surf. Coat. Technol., 2015, 278, p 25-29. https://doi.org/10.1016/j.surfcoat.2015.07.029

    Article  CAS  Google Scholar 

  16. N. Ma, L. Guo, Z. Cheng, H. Wu, F. Ye, and K. Zhang, Improvement on Mechanical Properties and Wear Resistance of HVOF Sprayed WC-12Co Coatings by Optimizing Feedstock Structure, Appl. Surf. Sci., 2014, 320, p 364-371.

    Article  CAS  Google Scholar 

  17. K. Hansol, P. Hyungkwon, and L. Changhee, Roles of Particle Size Distribution in Bimodal Feedstocks on the Deposition Behavior and Film Properties in Vacuum Kinetic Spraying, J. Therm. Spray Technol., 2018, 27, p 1-13.

    Google Scholar 

  18. L. Hwasoo, S.R. Chidambaram, P. Zdenek, and S. Sanjay, Optimizing Thermoelectric Properties of In Situ Plasma-Spray-Synthesized Sub-stoichiometric TiO2−x Deposits, J. Therm. Spray Technol., 2018, 27, p 968-982.

    Article  Google Scholar 

  19. A.G. Evans and T.R. Wilshaw, Quasi-Static Solid Particle damage in Brittle Solids—I Observations Analysis and Implications, Acta Metall., 1976, 24, p 939-956.

    Article  CAS  Google Scholar 

  20. Y. An, S. Li, G. Hou, X. Zhao, H. Zhou, and J. Chen, Mechanical and Tribological Properties of Nano/Micro Composite Alumina Coatings Fabricated by Atmospheric Plasma Spraying, Ceram. Int., 2017, 43, p 5319-5328.

    Article  CAS  Google Scholar 

  21. H. Malik, S. Sarkar, S. Mohanty, and K. Carlson, Modelling and Synthesis of Magnéli Phases in Ordered Titanium Oxide Nanotubes with Preserved Morphology, Sci. Rep., 2020, 10, p 8050.

    Article  CAS  Google Scholar 

  22. M. Lazzeri, A. Vittadini, and A. Selloni, Erratum: Structure and Energetics of Stoichiometric TiO2 Anatase Surface, Phys. Rev. B, 2002, 65, p 119901.

    Article  Google Scholar 

  23. B. Huang, J. Wang, and P. Yang, Self-Doped TiO2−x Nanowires with Enhanced Photocatalytic Activity: Facile Synthesis and Effects of the Ti3+, Appl. Surf. Sci. A J. Devot. Propert. Interfaces Relat. Syn. Behav. Mater., 2015, 356, p 391-398.

    Google Scholar 

  24. A.A. Gusev, E.G. Avvakumov, and O.B. Vinokurova, Synthesis of Ti4O7 Magneli Phase Using Mechanical Activation, Sci. Sinter., 2003, 35, p 141-145.

    Article  CAS  Google Scholar 

  25. J. David, G. Trolliard, and A. Matre, Transmission Electron Microscopy Study of the Reaction Mechanisms Involved in the Carbothermal Reduction of Anatase, Acta Mater., 2013, 61, p 5414-5428.

    Article  CAS  Google Scholar 

  26. Y. Bai, J.J. Tang, K. Liu, C.H. Ding, J.F. Yang, and Z.H. Han, Effect of Particle in-Flight Behavior on the Composition of Thermal Barrier Coatings, Appl. Surf. Sci., 2013, 286, p 184-191.

    Article  Google Scholar 

  27. Q. Liu, Y. Wang, Y. Bai, Z.D. Li, and Y.S. Ma, Formation Mechanism of Gas Phase in Supersonic Atmospheric Plasma Sprayed NiCr-Cr3C2 Cermet Coatings, Surf. Coat. Technol., 2020, 397, p 126052.

    Article  CAS  Google Scholar 

  28. H. Yu, R.X. Guo, H.T. Xia, F. Yan, and Y.B. Zhang, Study on the Effect of WC Size on the Thermal Expansion Coefficient of WC/Cu Composites, Appl. Mech. Mater., 2013, 275-277, p 1597-1600.

    Article  Google Scholar 

  29. Q. Qi, Y. Liu, L. Wang, H. Zhang, J. Huang, and Z. Huang, One New Route to Optimize the Oxidation Resistance of TiC/hastelloy (Ni-Based Alloy) Composites Applied for Intermediate Temperature Solid Oxide Fuel Cell Interconnect by Increasing Graphite Particle Size, J. Power Sources, 2017, 362, p 57-63.

    Article  CAS  Google Scholar 

  30. Z. Yin, S. Tao, X. Zhou, and C. Ding, Particle In-Flight Behavior and Its Influence on the Microstructure and Mechanical Properties of Plasma-Sprayed Al2O3 Coatings, J. Eur. Ceram. Soc., 2008, 28, p 1143-1148.

    Article  CAS  Google Scholar 

  31. Y. Wang, F. Zhou, L. Wang, S. Liu, and W. Yue, Tribological Property of Plasma-Sprayed Al2O3-13wt.%TiO2 Coatings onto Resin-Based Composites, Appl. Surf. Sci., 2018, 431, p 75-80.

    Article  Google Scholar 

  32. G.J. Yang, P.H. Gao, C.X. Li, and C.J. Li, Simultaneous Strengthening and Toughening Effects in WC-(nanoWC-Co), Scripta Mater., 2012, 66, p 777-780.

    Article  CAS  Google Scholar 

  33. S.L.A. Prasad, M.M. Mayuram, and R. Krishamurthy, Response of Plasma-Sprayed Alumina–Titania Composites to static Indentation Process, Mater. Lett., 1999, 41, p 234-240.

    Article  Google Scholar 

Download references

Acknowledgments

The paper was financially supported by NSFC (52122508, 52075543, 52130509), 173 project (2021-JJ-0175), and 145 Project.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Guozheng Ma or Fenghua Su.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, P., Ma, G., Su, F. et al. Microstructure and Micromechanical Properties of In situ Synthesized TiO2−x Coatings by Plasma Spraying of Bimodal Feedstocks. J Therm Spray Tech 31, 2300–2313 (2022). https://doi.org/10.1007/s11666-022-01449-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11666-022-01449-2

Keywords

Navigation