Skip to main content
Log in

Effect of reaction conditions on gamma radiation-induced graft polymerization of α-methyl styrene onto polyethersulfone films: a kinetic study

  • Published:
Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

Abstract

In this work, gamma irradiation from a cobalt 60Co source was used to graft Copolymerize α-methyl styrene (AMS) onto Polyethersulfone (PES) films. Grafting reaction was performed at ambient temperature by simultaneous method applying different dose rates for a total absorbed dose of 30 kGy. The effects of reaction conditions including, dose rate, monomer concentration and absorbed dose on the grafting yield (DOG) were studied. Results showed that the grafting conditions influence considerably DOG. In addition, the depth understanding of the graft copolymerization reaction kinetics under various reactions conditions have permitted establishing the dependence of the initial rate of grafting as a function as monomer concentration and dose rate and was expressed by the following equation: \(\frac{{dG_{0} }}{dt}\alpha \left[ M \right]^{2} \left[ D \right]^{0.47}\).

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Ang WL, Mohammad AW, Hilal N, Leo CPA (2015) review on the applicability of integrated/hybrid membrane processes in water treatment and desalination plants. Desalination 363:2–18

    Article  CAS  Google Scholar 

  2. Roy S, Ragunath S (2018) Emerging membrane technologies for water and energy sustainability: future prospects constrains and challenges. Energies 11:2997

    Article  CAS  Google Scholar 

  3. Le NL, Nunes SP (2016) Materials and membrane technologies for water and energy sustainability sustain. Mater Technol 7:1–28

    CAS  Google Scholar 

  4. Mabrouk W, Ogier L, Matoussi F, Sollogoub C, Vidal S, Dachraoui M, Fauvarque JF (2011) Preparation of new proton exchange membranes using sulfonated poly(ethersulfone) modified by octylamine (SPESOS). Mater Chem Phys 128:456–463

    Article  CAS  Google Scholar 

  5. Mabrouk W, Ogier L, Vidal S, Sollogoub C, Matoussi F, Dachraoui M, Fauvarque JF (2012) Synthesis and characterization of polymer blends of sulfonated polyethersulfone and sulfonated polyethersulfone octylsulfonamide for PEMFC applications. Fuel Cells 2:179–187

    Article  Google Scholar 

  6. Mozetič M (2019) Surface Modification to Improve Properties of Materials. Materials 12:441. https://doi.org/10.3390/ma12030441

    Article  CAS  PubMed Central  Google Scholar 

  7. Robeson LM (2012) Polymer Membranes. Polym Sci: A Compr Ref. https://doi.org/10.1016/b978-0-444-53349-4.00211-9

    Article  Google Scholar 

  8. Bharti V, Singh PK, Sharma JP (2020) Development of polymer electrolyte membranes based on biodegradable polymer. Mater Today Proce. https://doi.org/10.1016/j.matpr.2020.06.463

    Article  Google Scholar 

  9. Nasrollahi N, Ghalamchi L, Vatanpour V, Khataee A, Yousef M (2022) Novel polymeric additives in the preparation and modification of polymeric membranes: A comprehensive review. J Ind Eng Chem. https://doi.org/10.1016/j.jiec.2022.02.036

    Article  Google Scholar 

  10. Nagandran S, Goh PS, Ismail AF, Wong TW, Binti Wan Dagang WRZ (2020) The recent progress in modification of polymeric membranes using organic macromolecules for water treatment. Symmetry 12:239. https://doi.org/10.3390/sym12020239

    Article  CAS  Google Scholar 

  11. Ashfaq A, Clochard MC, Coqueret X, Dispenza C, Driscoll MS, Ulański P, Al-Sheikhly M (2020) Polymerization reactions and modifications of polymers by ionizing radiation. Polymers 12:2877. https://doi.org/10.3390/polym12122877

    Article  CAS  PubMed Central  Google Scholar 

  12. Bhattacharya A, Misra BN (2004) Grafting: a versatile means to modify polymers techniques, factors and applications. Prog Polym Sci 29:767–814

    Article  CAS  Google Scholar 

  13. Pasanphan W, Haema K, Tangthong T, Piroonpan T (2014) Modification of chitosan onto PE by irradiation in salt solutions and possible use as Cu2+ complex film for pest snail control. J Appl Polym Sci 131:41204

    Article  Google Scholar 

  14. Li MC, Lee JK, Cho UR (2012) Synthesis, characterization, and enzymatic degradation of starch-grafted poly (methyl methacrylate) copolymer films. J Appl Polym Sci 125:405-e414

    Article  CAS  Google Scholar 

  15. Baranov IA, Andriyanova NA, Mochalova AE, Sibirkin AA, Batenkin MAL, Smirnova A (2012) Grafting polymerization of acrylonitrile and methyl acrylate on chitosan in the presence of cobalt(III) complexes. Polym Sci, Ser B 54:167–174

    Article  CAS  Google Scholar 

  16. Pandey PK, Srivastava A, Tripathy J, Behari K (2006) Graft copolymerization of acrylic acid onto guar gum initiated by vanadium (V) mercaptosuccinic acid redox pair. Carbohyd Polym 65:414–420

    Article  CAS  Google Scholar 

  17. Singh V, Kumar P, Sanghi R (2012) Use of microwave irradiation in the grafting modification of the polysaccharides e a review. Prog Polym Sci 37:340–364

    Article  CAS  Google Scholar 

  18. Bhattacharya A (2000) Radiation and industrial polymers. Prog Polym Sci 25:371–401

    Article  CAS  Google Scholar 

  19. Clough RL (2001) High-energy radiation and polymers: a review of commercial processes and emerging applications. Nucl Instrum Methods Phys Res, Sect B 185:8–33

    Article  CAS  Google Scholar 

  20. Lacroix M, Khan R, Senna M, Sharmin N, Salmieri S, Safrany A (2014) Radiation grafting on natural films. Radiat Phys Chem 94:88–92

    Article  CAS  Google Scholar 

  21. Pino-Ramos VH, Meléndez-Ortiz HI, Ramos-Ballesteros A, Bucio E (2018) Radiation Grafting of Biopolymers and Synthetic Polymers. Biopolym Grafting: Appl. https://doi.org/10.1016/b978-0-12-810462-0.00006-5

    Article  Google Scholar 

  22. Kim B, Weaver A, Chumakov M, Pazos IM, Poster DL, Gaskell K, Al-Sheikhly M (2018) Mechanisms and characterization of the pulsed electron-induced grafting of styrene onto poly (Tetrafluoroethylene-co-Hexafluoropropylene) to prepare a polymer electrolyte membrane. Radiat Res 190:309–321. https://doi.org/10.1667/rr15006.1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Sherazi TA, Guiver MD, Kingston D, Ahmad S, Kashmiri MA, Xue X (2010) Radiation-grafted membranes based on polyethylene for direct methanol fuel cells. J Power Sources 195:21–29

    Article  CAS  Google Scholar 

  24. Gubler L, Slaski M, Wallasch F, Wokaun A, Scherer GG (2009) Radiation grafted fuel cell membranes based on co-grafting of α-methylstyrene and methacrylonitrile into a fluoropolymer base film. J Membr Sci 339:68–77

    Article  CAS  Google Scholar 

  25. Gubler L, Slaski M, Wokaun A, Scherer GG (2006) Advanced monomer combinations for radiation grafted fuel cell membranes. Electrochem Commun 1215:68–77

    Google Scholar 

  26. Gubler L (2014) Polymer design strategies for radiation-grafted fuel cell membranes. Adv Energy Mater 4:1300827

    Article  Google Scholar 

  27. Furtado Filho AAM, Gomes AS (2006) Copolymerization of styrene onto polyethersulfone films induced by gamma ray irradiation. Polym Bull 57:415–421. https://doi.org/10.1007/s00289-006-0574-7

    Article  CAS  Google Scholar 

  28. Kim BN, Lee DH, Han DH (2008) Characteristics of fuel cell membranes prepared by EB radiation grafting onto FEP with styrene derivatives, styrene and 2-methylstyrene. J Electrochem Soc 155:B680–B685

    Article  CAS  Google Scholar 

  29. Büchi FN, Gupta B, Haas O, Scherer GG (1995) Study of radiation-grafted FEP-G-polystyrene membranes as polymer electrolytes in fuel cells. Electrochim Acta 40:345–353. https://doi.org/10.1016/0013-4686(94)00274-5

    Article  Google Scholar 

  30. Chen JH, Asano M, Yamaki T, Yoshida M (2005) Preparation of sulfonated crosslinked PTFE- graft-poly (alkyl vinyl ether) membranes for polymer electrolyte membrane fuel cells by radiation processing. J Membr Sci 256:38–45

    CAS  Google Scholar 

  31. Nasef MM, Saidi H, Nor HM (2000) Proton exchange membranes prepared by simultaneous radiation grafting of styrene onto poly (tetrafluoroethylene-co-hexafluoropropylene) films. I. Effect of grafting conditions. J Appl Polymer Sci 76:220–227

    Article  CAS  Google Scholar 

  32. Becker W, Bothe M, Schmidt-Naake G (1999) Grafting of poly (styrene-co- acrylonitrile) onto pre-irradiated FEP and ETFE films. Macromol Mater Eng 273:57–62

    CAS  Google Scholar 

  33. Nasef MM, Hegazy ESA (2004) Preparation and applications of ion exchange membranes by radiation-induced graft copolymerization of polar monomers onto non-polar films. Prog Polym Sci 29:499–561

    Article  CAS  Google Scholar 

  34. Nasef MM (2001) Effect of solvents on radiation-induced grafting of styrene onto fluorinated polymer films. Polym Int 50:338–346. https://doi.org/10.1002/pi.634

    Article  CAS  Google Scholar 

  35. Nasef MM (2014) Radiation-grafted membranes for polymer electrolyte fuel cells: current trends and future directions. Chem Rev 114:12278–12329

    Article  CAS  Google Scholar 

  36. Kabanov VY (2004) Preparation of polymer membranes for fuel cells by radiation graft polymerization. High Energy Chem 38:57–65

    Article  CAS  Google Scholar 

  37. Gautam D, Gupta B, Saiqa I (2013) Radiation-induced graft copolymerization of a-methyl styrene and butyl acrylate mixture into polyetheretherketone films. J Appl Polym Sci 128:1854

    Article  CAS  Google Scholar 

  38. Guowen Hu, Wang Yu, Ma Jun, Qiu Jingyi, Peng Jing, Li Jiuqiang, Zhai Maolin (2012) A novel amphoteric ion exchange membrane synthesized by radiation-induced grafting α-methylstyrene and N, N-dimethylaminoethyl methacrylate for vanadium redox flow battery application. J Membr Sci 184:407

    Google Scholar 

  39. Rager H (2004) Parameter study for the pre-irradiation grafting of styrene/divinylbenzene onto poly (tetrafluoroethylene-co -hexafluoropropylene) from isopropanol solution. Chimica Acta 87:400

    CAS  Google Scholar 

  40. Gürsel SA, Ben youcef H., Wokaun A., Scherer G. G. (2007) Influence of reaction parameters on grafting of styrene into poly (ethylene-alt-tetrafluoroethylene) films. Nucl Instrum Methods Phys Res, Sect B 265:198

    Article  Google Scholar 

  41. Chen J, Asano MY, T., Yoshida M, (2006) Improvement of chemical stability of polymer electrolyte fuel cell membranes by grafting of new substituted Styrene monomers into ETFE Films. J Mater Sci 41:1289

    Article  CAS  Google Scholar 

  42. Chen J, Asano M, Yamaki T, Yoshida M (2006) Effect of crosslinkers on the preparation and properties of ETFE-based radiation-grafted polymer electrolyte membranes. J Appl Polymer Sci 100:4565–4574

    Article  CAS  Google Scholar 

  43. Chen J, Asano M, Yamaki T, Yoshida M (2006) Preparation and characterization of chemically stable polymer electrolyte membranes by radiation-induced graft copolymerization of four monomers into ETFE films". Journal of Membrane science 269:194–204

    Article  CAS  Google Scholar 

  44. Assink RA, Arnold C, Hollandsworth RP (1991) Preparation of oxidatively stable cation-exchange membranes by the elimination of tertiary hydrogen". J Membr Sci 56(252):143–151

    Article  CAS  Google Scholar 

  45. Fleischhauer J, Schmidt-Naake G, Scheller D (1996) Untersuchungen zum reaktionsverhalten beim vorliegen von depolymerisationsreaktionen. untersuchung von copolymerisationen des α methylstyrols. Die Angew Makromol Chem 243:11–37

    Article  CAS  Google Scholar 

  46. Wang Y, Ruiz Diaz DF, Chen KS, Wang Z, Adroher XC (2020) Materials, technological status, and fundamentals of PEM fuel cells – a review. Mater Today 32:178–203. https://doi.org/10.1016/j.mattod.2019.06.005

    Article  CAS  Google Scholar 

  47. Nasef MM, Gürsel SA, Karabelli D, Güven O (2016) Radiation-grafted materials for energy conversion and energy storage applications. Prog Polym Sci 63:1–41

    Article  CAS  Google Scholar 

  48. Gürsel SA, Wokaun A, Scherer GG (2007) Influence of reaction parameters on grafting of styrene into poly (ethylene-alt-tetrafluoroethylene) films. Nucl Instrum Methods Phys Res, Sect B 265:198–203

    Article  Google Scholar 

  49. Lunkwitz K, Lappan U, Lehmann D (2000) Modification of fluoropolymers by means of electron beam irradiation. Radiat Phys Chem 57:373–376. https://doi.org/10.1016/S0969-806X(99)00407-7

    Article  CAS  Google Scholar 

  50. Hegazy EA, Ishigaki I, Okamoto J (1981) Radiation grafting of acrylic acid onto fluorine-containing polymers. I. Kinetic study of preirradiation grafting onto poly (tetrafluoroethylene). J Appl Polym Sci 26:3117–3124. https://doi.org/10.1002/app.1981.070260925

    Article  CAS  Google Scholar 

  51. Nasef MM, Saidi H, Nor HM, Foo OM (2000) Proton exchange membranes prepared by simultaneous radiation grafting of styrene onto poly(tetrafluoroethylene-co-hexafluoropropylene) films. II. Properties of sulfonated membranes. J Appl Polym Sci 78:2443–2453. https://doi.org/10.1002/1097-4628

    Article  CAS  Google Scholar 

  52. Cardona F, George GA, Hill DJT, Rasoul F, Maeji J (2002) Copolymers obtained by the radiation-induced grafting of styrene onto poly(tetrafluoroethylene-co-perfluoropropylvinyl ether) substrates. 1. Prep Struct Investig Macromol 35:355–364. https://doi.org/10.1021/ma0022295

    Article  CAS  Google Scholar 

  53. Gubler L, Gürsel SA, Henkensmeier D, Wokaun A (2009) Scherer GG (2009) Novel ETFE based radiation grafted poly (styrene sulfonic acid-co-methacrylonitrile) proton conducting membranes with increased stability. Electrochem Commun 11:941–944

    Article  Google Scholar 

  54. Bose S, Kuila T, Nguyen TXH, Kim NH, Lau KT, Lee JH (2011) Polymer membranes for high temperature proton exchange membrane fuel cell: Recent advances and challenges. Prog Polym Sci 36:813–843. https://doi.org/10.1016/j.progpolymsci.2011.01.003

    Article  CAS  Google Scholar 

  55. Subianto S, Pica M, Casciola M, Cojocaru P, Merlo L, Hards G (2013) Physical and chemical modification routes leading to improved mechanical properties of perfluorosulfonic acid membranes for PEM fuel cells. J Power Sources 233:216–230. https://doi.org/10.1016/j.jpowsour.2012.12.121

    Article  CAS  Google Scholar 

  56. Wang L, Magliocca E, Cunningham EL, Mustain WE, Poynton SD, Escudero-Cid R et al (2017) An optimised synthesis of high performance radiation-grafted anion-exchange membranes. Green Chem 19:831–843. https://doi.org/10.1039/c6gc02526a

    Article  CAS  Google Scholar 

  57. Rohani R, Nasef MM, Saidi H, Dahlan KZM (2007) Effect of reaction conditions on electron induced graft copolymerization of styrene onto poly (ethylene-co-tetrafluoroethylene) films: Kinetics study. Chem Eng J 132:27–35. https://doi.org/10.1016/j.cej.2007.01.011

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to acknowledge the financial support of the Tunisian Ministry of Higher Education and Scientific Research. The authors are also grateful for the financial support from International Atomic Energy Agency, research project contract: IAEA RC F22073.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amira Zaouak.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zaouak, A., Mabrouk, W. & Feraig, M. Effect of reaction conditions on gamma radiation-induced graft polymerization of α-methyl styrene onto polyethersulfone films: a kinetic study. J Radioanal Nucl Chem 331, 3693–3701 (2022). https://doi.org/10.1007/s10967-022-08455-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10967-022-08455-2

Keywords

Navigation