Skip to main content
Log in

Simulation study of stopping power and damage profiles of H/He plasma irradiation in tungsten and its alloys for fusion power plant

  • Published:
Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

Abstract

Tungsten (W) plays a crucial role in the lifetime of the plasma-facing components of DEMO. In order to avoid oxidation, W-based alloys have been studied as alternatives to W. In this work, the Monte Carlo SRIM-2013 simulation program was used to calculate the nuclear stopping power, electronic stopping power, amount of target vacancies, displacements, replacement collisions, and total target damage of W, W-Cr-Si, W-Cr-Ti, and W-Cr-Y by hydrogen and helium ion bombardment. It is found that W is resistant to vacancies, atomic displacement, and total damage compared to W-based alloys.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Minucci S, Panella S, Ciattaglia S, Falvo MC, Lampasi A (2020) Electrical loads and power systems for the DEMO nuclear fusion project. Energies 13(9):2269

    Article  CAS  Google Scholar 

  2. Federici G, Boccaccini L, Cismondi F, Gasparotto M, Poitevin Y, Ricapito I (2019) An overview of the EU breeding blanket design strategy as an integral part of the DEMO design effort. J Fus Eng Design 141:30–42

    Article  CAS  Google Scholar 

  3. Day Chr, Butler B, Giegerich T, Lang PT, Lawless R, Meszaros B (2016) Consequences of the technology survey and gap analysis on the EU DEMO R&D programme in tritium, matter injection and vaccum. J Fus Eng Design 109:299–308

    Google Scholar 

  4. Pitts RA, Carpentier S, Escourbiac F, Hirai T et al (2011) Physics basis and design of the ITER plasma-facing components. J Nucl Mater 415(1):S957–S964

    Article  CAS  Google Scholar 

  5. Troev T, Popov E, Staikov P, Nankov N, Yoshiie T (2009) Positron simulations of defects in tungsten containing hydrogen and helium. J Nucl Instrum Methods Phys B 267(3):535–541

    Article  CAS  Google Scholar 

  6. Pospieszczyk A, Brezinsek S, Mertens Ph, Sergienko G (2002) The role of hydrogen atoms and molecules in the plasma boundary. Contrib Plasma Phys 42(6–7):663–667

    Article  CAS  Google Scholar 

  7. Fu T, Cui K, Zhang Y, Wang J, Shen F, Yu L, Qie J, Zhang X (2021) Oxidation protection of tungsten alloys for nuclear fusion applications: A comprehensive review. J Alloys Compd 884:161057

    Article  CAS  Google Scholar 

  8. Litnovsky A, Schmitz J, Klein F, Lannoye KD et al (2020) Smart tungsten-based alloys for a first wall of demo. J Fus Eng Design 159:111742

    Article  CAS  Google Scholar 

  9. Bachurina D, Tan XY, Klein F, Suchkov A, Litnovsky A et al (2021) Self-passivating smart tungsten alloys for DEMO: a progress in joining and upscale for a first wall mockup. Tungsten 3(1):101–115

    Article  Google Scholar 

  10. Litnovsky A, Klein F, Tan X, Ertmer J et al (2021) Advanced self-passivating alloys for an application under extreme conditions. Metals 11(8):1255

    Article  CAS  Google Scholar 

  11. Yi G, Liu W, Ye C, Xue L, Yan Y (2021) A self-passivating W-Si-Y alloy: Microstructure and oxidation resistance behavior at high temperatures. Corros Sci 192:109820

    Article  CAS  Google Scholar 

  12. Koch F, Bolt H (2007) Self passivating W-based alloys as plasma facing material for nuclear fusion. Physica Scripta 2007 (T128):100

  13. Koch F, Kôppl S, Bolt H (2009) Self passivating W-based alloys as plasma facing material. J Nucl Mater 386:572–574

    Article  Google Scholar 

  14. Liu DG, Zheng L, Luo LM, Zan X, Song JP, Xu Q, Zhu XY, Wu YC (2018) An overview of oxidation-resistant tungsten alloys for nuclear fusion. J Alloys Compd 765:299–312

    Article  CAS  Google Scholar 

  15. Hou QQ, Huang K, Luo LM, Tan XY, Zan X, Xu Q, Zhu XY, W YC (2019) Microstructure and its high temperature oxidation behavior of W-Cr alloys prepared by spark plasma sintering. Materialia 6:100332

    Article  CAS  Google Scholar 

  16. Zhao Z, Li Y, Zhang C, Pan G, Tang P, Zeng Z (2017) Effect of grain size on the behavior of hydrogen/helium retention in tungsten: a cluster dynamics modeling. J Nucl fus 57(8):086020

    Article  Google Scholar 

  17. Brooks JN, Allain JP, Doerner RP, Hassanein A, Nygren R, Rognlien TD, Whyte DG (2009) Plasma-surface interaction issues of an all-metal ITER. J Nucl fus 49(3):035007

    Article  Google Scholar 

  18. Correa AA (2018) Calculating electronic stopping power in materials from first principles. Comput Mater Sci 150:291–303

    Article  CAS  Google Scholar 

  19. Andersen HH, Brunelle A, Della-Negra S, Depauw J, Jacquet D, Beyec YL, Chaumont J, Bernas H (1998) Giant metal sputtering yields induced by 20-5000 keV/atom gold clusters. Phys Rev lett 80(24):5433

    Article  CAS  Google Scholar 

  20. Meluzova DS, Babenko PY, Shergin AP, Nordlund K, Zinoviev AN (2019) Reflection of hydrogen and deuterium atoms from the beryllium, carbon, tungsten surfaces. J Nucl Instrum Methods Phys B 460:4–9

    Article  CAS  Google Scholar 

  21. Zinov’ev AN, Babenko PY (2020) Nuclear stopping power of hydrogen and helium isotopes in beryllium, carbon, and tungsten. Tech Phys Lett 46(9):909–912

    Article  Google Scholar 

  22. Weber WJ, Zhang Y (2019) Predicting damage production in monoatomic and multi-elemental targets using stopping and range of ions in matter code: Challenges and recommendations. Curr Opin Solid State Mater Sci 23(4):100757

    Article  CAS  Google Scholar 

  23. Paul H (2013) Nuclear stopping power and its impact on the determination of electronic stopping. Power-AIP Conference Proceedings 1525(1):309–313

  24. DIB A, Ammi H, Msimanga M, Mammeri S, Pineda-Vargas CA (2019) Energy loss and stopping force of heavy ions Cu,Si, Al and F through thin Nickel (Ni) foil at low MeV energies. J Nucl Instrum Methods Phys B 450:43–46

    Article  CAS  Google Scholar 

  25. Duan G, Xing T, Li Y (2012) Preferential sputtering of Ar ion processing SiO2 mirror. AOMATT, the 6th International Symposium on advanced Optical Manufacturing and Testing Technologies 8416:585–592

  26. Anderson HH, Ziegler JF (1977) Helium stopping powers and ranges in all elements

  27. Saha U, Devan K, Ganesan S (2018) A study to compute integrated dpa for neutron and ion irradiation environments using SRIM-2013. J Nucl Mater 503:30–41

    Article  CAS  Google Scholar 

  28. Ahn HS, Kim TE, Cho E, Ji M, Lee CK, Han S, Cho Y, Kim C (2008) Molecular dynamics study on low-energy sputtering properties of MgO surfaces. J Appl Phys 103(7):073518

    Article  Google Scholar 

  29. The stopping and range of Ions in Matter [online]. www.srim.org

  30. Yalçin C(2015) Thickness measurement using alpha spectroscopy and SRIM. J Physics: Conference Series. IOP Publishing 590(1): 012050

  31. Zhang Y, Lian J, Zhu Z, Bennett WD, Saraf LV, Rausch JL, Hendricks CA, Ewing RC, Weber WJ (2009) Response of strontium titanate to ion and electron irradiation. J Nucl Mater 389(2):303–310

    Article  CAS  Google Scholar 

  32. Litnovsky A, Wegener T, Klein F, Linsmeier C et al (2017) Advanced smart tungsten alloys for a future fusion power plant. Plasma Phys Controlled Fusion 59(6):064003

    Article  Google Scholar 

  33. Rautray TR, Narayanan R, Kim KH (2011) Ion implantation of titanium based biomaterials. Prog Mater Sci 56(8):1137–1177

    Article  CAS  Google Scholar 

  34. Ali SH, Saeed SR (2014) Theoretical calculation of different ion surface interaction parameters of Si target. J zankoy sulaimani-Part (JZS-A) 16(1):1

    Google Scholar 

  35. Giri K, Kandel B (2020) Study of damage profiles and energy calculation of arsenic ions during ion implantation on germanium. BIBECHANA 17:96–103

    Article  Google Scholar 

  36. Mahady K, Tan S, Greenzweig Y, Livengood R, Raveh A, Rack P (2016) Monte Carlo simulations of nanoscale Ne+ ion beam sputtering: investigating the influence of surface effects, interstitial formation, and the nanostructural evolution. Nanotechnology 28(4):045305

    Article  Google Scholar 

Download references

Acknowledgements

The authors declare that they have no known competing financial interests or personal relationships that could have appear to influence the work reported in this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Meriem El Marsi.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

El Marsi, M., Elmaddahi, Z., Fechtal, I. et al. Simulation study of stopping power and damage profiles of H/He plasma irradiation in tungsten and its alloys for fusion power plant. J Radioanal Nucl Chem 331, 3795–3806 (2022). https://doi.org/10.1007/s10967-022-08415-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10967-022-08415-w

Keywords

Navigation