Skip to main content
Log in

Numerical Simulations on Dynamic Behavior of Multiphase Flow and Heat Transfer in a Round Mold with a Swirling Flow Tundish Design

  • Original Research Article
  • Published:
Metallurgical and Materials Transactions B Aims and scope Submit manuscript

Abstract

Three-dimensional computational fluid dynamics simulations were carried out to investigate the multiphase flow and heat transfer in a round mold, when using swirling flow generator (SFG) designs in a tundish. The results show that an impinging flow in the mold is significantly suppressed by using a SFG design, compared to when using a conventional tundish. This is due to the rotational flow momentum, which forces the steel to move toward the mold wall. When using SFG designs, the whole flow field shows periodic characteristics in transient simulations. At a given casting speed, the velocity fluctuation period and fluctuation range in the submerged entry nozzle depend on the SFG inlet area as well as the inlet velocity. As the inlet velocity increases from 0.185 to 0.37 m/s (inlet area decreases from 0.0048 to 0.0024 m2), the velocity fluctuation period decreases from 3 to 2 seconds and the fluctuation range increases from ± 10.5 to ± 18.2 pct. However, a symmetrical distribution of the flow field is obtained in the time-averaged results of 9 and 6 seconds intervals for SFG inlet velocities of 0.185 and 0.37 m/s, respectively. In addition, within one velocity fluctuation period, the time-averaged temperature field generally has a uniform distribution. As the SFG inlet velocity increases from 0.185 to 0.37 m/s, the steel super-heat further decreases in the mold and the temperature is increased by around 2 K near the meniscus. Finally, in the current mold with a diameter of only 150 mm, the removal ratio of inclusions to the mold top surface is low by using both SFG designs. The removal ratio of 10 μm spherical inclusions is 10 pct lower compared to when using a conventional tundish.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20

Similar content being viewed by others

References

  1. World Steel Association: World Steel Association, Brussels, 1967. https://www.worldsteel.org/. Accessed 12 June 2021.

  2. M. Bai, R. Tong, and J. Ge: Adv. Mater. Res., 2011, vol. 160–162, pp. 151–56.

    Google Scholar 

  3. M. Bai, J. Ge, and R. Tong: Adv. Mater. Res., 2010, vol. 37–38, pp. 1176–81.

    Google Scholar 

  4. Y. Wang, L. Zhang, W. Yang, and Y. Ren: J. Iron Steel Res. Int., 2022, vol. 29, pp. 237–46.

    Article  Google Scholar 

  5. M. Xu and M. Zhu: J. Iron Steel Res. Int., 2021, vol. 28, pp. 1390–99.

    Article  Google Scholar 

  6. J. Zhang, C. Zhang, L. Wang, M. Han, and W.S. Hwang: Metallurgist, 2017, vol. 60, pp. 916–22.

    Article  CAS  Google Scholar 

  7. M. Yang, Z. Li, F. Wei, C. Cheng, X. Chen, and S. Qi: Adv. Mater. Res., 2012, vol. 424–425, pp. 811–16.

    Article  CAS  Google Scholar 

  8. L. Zhong, M. Zhang, and X. Liu: Adv. Mater. Res., 2012, vol. 402, pp. 196–201.

    Article  Google Scholar 

  9. X. Li, Z. Zhang, M. Lv, M. Fang, and K. Liu: Steel Res. Int., 2022, https://doi.org/10.1002/srin.202100673.

    Article  Google Scholar 

  10. P. Xu, Y. Zhou, D. Chen, M. Long, and H. Duan: J. Iron Steel Res. Int., 2022, vol. 29, pp. 44–52.

    Article  Google Scholar 

  11. D. Guo, Z. Hou, J. Cao, Z. Guo, Y. Chang, and G. Wen: J. Iron Steel Res. Int., 2020, vol. 27, pp. 1163–69.

    Article  CAS  Google Scholar 

  12. D.C. Merten, M.T. Hütt, and Y. Uygun: J. Iron Steel Res. Int., 2022, vol. 29, pp. 71–79.

    Article  Google Scholar 

  13. Z. Jiang, Z. Su, C. Xu, J. Chen, and J. He: J. Iron Steel Res. Int., 2020, vol. 27, pp. 160–68.

    Article  CAS  Google Scholar 

  14. B. Yang, A. Deng, Y. Li, X. Xu, and E. Wang: J. Iron Steel Res. Int., 2019, vol. 26, pp. 219–29.

    Article  CAS  Google Scholar 

  15. D. Jiang, L. Zhang, and Y. Wang: J. Iron Steel Res. Int., 2022, vol. 29, pp. 124–31.

    Article  Google Scholar 

  16. H. Yu and M. Zhu: Ironmak. Steelmak., 2012, vol. 39, pp. 574–84.

    Article  CAS  Google Scholar 

  17. P.P. Sahoo, A. Kumar, J. Halder, and M. Raj: ISIJ Int., 2009, vol. 49, pp. 521–28.

    Article  CAS  Google Scholar 

  18. X. Li, B. Li, Z. Liu, R. Niu, and X. Huang: Steel Res. Int., 2019, vol. 90, p. 1800133.

    Article  CAS  Google Scholar 

  19. K.H. Spitzer, M. Dubke, and K. Schwerdtfeger: Metall. Mater. Trans. B, 1986, vol. 17B, pp. 119–31.

    Article  Google Scholar 

  20. S. Yokoya, Y. Asako, S. Hara, and J. Szekely: ISIJ Int., 1994, vol. 34, pp. 883–88.

    Article  CAS  Google Scholar 

  21. S. Yokoya, R. Westoff, Y. Asako, S. Hara, and J. Szekely: ISIJ Int., 1994, vol. 34, pp. 889–95.

    Article  CAS  Google Scholar 

  22. Y. Tsukaguchi, H. Hayashi, H. Kurimoto, S. Yokoya, K. Marukawa, and T. Tanaka: ISIJ Int., 2010, vol. 50, pp. 721–29.

    Article  CAS  Google Scholar 

  23. S. Yokoya, S. Takagi, M. Iguchi, Y. Asako, R. Westoff, and S. Hara: ISIJ Int., 1998, vol. 38, pp. 827–33.

    Article  CAS  Google Scholar 

  24. S. Yokoya, P.G. Jönsson, K. Sasaki, K. Tada, S. Takagi, and M. Iguchi: ISIJ Int., 2004, vol. 33, pp. 22–28.

    CAS  Google Scholar 

  25. Y. Tsukaguchi, O. Nakamura, P. Jönsson, S. Yokoya, T. Tanaka, and S. Hara: ISIJ Int., 2007, vol. 47, pp. 1436–43.

    Article  CAS  Google Scholar 

  26. D. Li, Z. Su, L. Sun, K. Marukawa, and J. He: Adv. Mater. Res., 2011, vol. 295–297, pp. 1284–88.

    Google Scholar 

  27. D. Li, Z. Su, K. Marukawa, and J. He: J. Iron Steel Res. Int., 2014, vol. 21, pp. 159–65.

    Article  CAS  Google Scholar 

  28. T. Wondrak, S. Eckert, V. Galindo, G. Gerbeth, F. Stefani, K. Timmel, A.J. Peyton, W. Yin, and S. Riaz: Ironmak. Steelmak., 2012, vol. 39, pp. 1–9.

    Article  CAS  Google Scholar 

  29. K. Timmel, C. Kratzsch, A. Asad, D. Schurmann, R. Schwarze, and S. Eckert: IOP Conf. Ser. Mater. Sci. Eng., 2017, vol. 228, p. 012019.

    Article  Google Scholar 

  30. D. Li, Z. Su, J. Chen, Q. Wang, Y. Yang, K. Nakajima, K. Marukawa, and J. He: ISIJ Int., 2013, vol. 53, pp. 1187–94.

    Article  CAS  Google Scholar 

  31. C. Wu, Q. Wang, D. Li, X. Zhu, B. Jin, L. Wang, and H. Lei: J. Mater. Res. Technol., 2020, vol. 9, pp. 5630–39.

    Article  CAS  Google Scholar 

  32. H. Sun and J. Zhang: ISIJ Int., 2011, vol. 51, pp. 1657–63.

    Article  CAS  Google Scholar 

  33. H. Sun and J. Zhang: Metall. Mater. Trans. B, 2014, vol. 45B, pp. 936–46.

    Article  CAS  Google Scholar 

  34. P. Lin, Y. Jin, F. Yang, Z. Liu, R. Jing, Y. Cao, Y. Xiang, C. Cheng, and Y. Li: Metals, 2020, vol. 10, p. 691.

    Article  Google Scholar 

  35. H. Sun and L. Li: Ironmak. Steelmak., 2016, vol. 43, pp. 228–33.

    Article  CAS  Google Scholar 

  36. H. Sun, L. Li, and C. Liu: Metals, 2018, vol. 8, p. 842.

    Article  CAS  Google Scholar 

  37. P. Ni, L.T.I. Jonsson, M. Ersson, and P.G. Jönsson: Steel Res. Int., 2016, vol. 87, pp. 1356–65.

    Article  CAS  Google Scholar 

  38. P. Ni, L.T.I. Jonsson, M. Ersson, and P.G. Jönsson: Steel Res. Int., 2017, vol. 88, p. 1600155.

    Article  CAS  Google Scholar 

  39. P. Ni, L.T.I. Jonsson, M. Ersson, and P.G. Jönsson: ISIJ Int., 2017, vol. 57, pp. 2175–84.

    Article  CAS  Google Scholar 

  40. P. Ni, D. Wang, L.T.I. Jonsson, M. Ersson, T. Zhang, and P.G. Jönsson: Metall. Mater. Trans. B, 2017, vol. 48B, pp. 2695–2706.

    Article  CAS  Google Scholar 

  41. P. Ni, M. Ersson, L.T.I. Jonsson, and P.G. Jönsson: Metall. Mater. Trans. B, 2018, vol. 49B, pp. 723–36.

    Article  CAS  Google Scholar 

  42. P. Ni, M. Ersson, L.T.I. Jonsson, T. Zhang, and P.G. Jönsson: Metals, 2018, vol. 8, p. 910.

    Article  CAS  Google Scholar 

  43. P. Ni, M. Ersson, L.T.I. Jonsson, T. Zhang, and P.G. Jönsson: Metals, 2018, vol. 8, p. 368.

    Article  CAS  Google Scholar 

  44. Q. Xie, M. Nabeel, M. Ersson, and P. Ni: Steel Res. Int., 2021, vol. 93, p. 2100410.

    Article  CAS  Google Scholar 

  45. H. Bai, P. Ni, M. Ersson, T. Zhang, and P.G. Jönsson: Ironmak. Steelmak., 2019, vol. 46, pp. 911–20.

    Article  CAS  Google Scholar 

  46. Q. Fang, H. Ni, H. Zhang, B. Wang, and Z. Lv: Metals, 2017, vol. 7, p. 146.

    Article  CAS  Google Scholar 

  47. S.V. Patankar: Numerical Heat Transfer and Fluid Flow, Hemisphere Publishing Corporation, New York, 1980.

    Google Scholar 

  48. ANSYS: ANSYS Fluent User’s Guide, Release 17.0, ANSYS, Canonsburg, 2016.

    Google Scholar 

  49. T.H. Shih, W.W. Liou, A. Shabbir, Z. Yang, and J. Zhu: Comput. Fluids, 1995, vol. 24, pp. 227–38.

    Article  Google Scholar 

  50. ANSYS: ANSYS Fluent Theory Guide, Release 17.0, ANSYS, Canonsburg, 2016.

    Google Scholar 

  51. M.M. Gibson and B.E. Launder: J. Fluid Mech., 2006, vol. 86, pp. 491–511.

    Article  Google Scholar 

  52. B.E. Launder: Int. J. Heat Fluid Flow, 1989, vol. 10, pp. 282–300.

    Article  Google Scholar 

  53. B.E. Launder, G.J. Reece, and W. Rodi: J. Fluid Mech., 2006, vol. 68, pp. 537–66.

    Article  Google Scholar 

  54. F.S. Lien and M.A. Leschziner: Comput. Fluids, 1994, vol. 23, pp. 984–1004.

    Article  Google Scholar 

  55. A. Li and G. Ahmadi: Aerosol Sci. Technol., 1992, vol. 16, pp. 209–26.

    Article  CAS  Google Scholar 

  56. P.G. Saffman: J. Fluid Mech., 1965, vol. 22, pp. 385–400.

    Article  Google Scholar 

  57. S.A. Morsi and A.J. Alexander: J. Fluid Mech., 1972, vol. 55, pp. 193–208.

    Article  Google Scholar 

  58. A. Haider and O. Levenspiel: Powder Technol., 1989, vol. 58, pp. 63–70.

    Article  CAS  Google Scholar 

  59. S. Yokoya, S. Takagi, M. Iguchi, K. Marukawa, and S. Hara: ISIJ Int., 2000, vol. 40, pp. 578–83.

    Article  CAS  Google Scholar 

  60. H. Bai, M. Ersson, and P.G. Jönsson: Steel Res. Int., 2017, vol. 88, p. 1600339.

    Article  CAS  Google Scholar 

  61. S. Yokoya, S. Takagi, M. Iguchi, K. Marukawa, W. Yasugaira, and S. Hara: ISIJ Int., 2000, vol. 40, pp. 584–88.

    Article  CAS  Google Scholar 

  62. H. Yang, S.P. Vanka, and B.G. Thomas: JOM, 2018, vol. 70, pp. 2148–56.

    Article  CAS  Google Scholar 

  63. H. Bai and B.G. Thomas: Metall. Mater. Trans. B, 2001, vol. 32B, pp. 707–22.

    Article  CAS  Google Scholar 

  64. L. Jonsson and P. Jonsson: ISIJ Int., 1996, vol. 36, pp. 1127–34.

    Article  CAS  Google Scholar 

  65. Z. Xiao, Y. Peng, and C. Liu: Chin. J. Mater. Sci. Technol., 1987, vol. 3, p. 187.

    Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China (Grant No. 51704062) and the Fundamental Research Funds for the Central Universities (Grant No. N2025019).

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peiyuan Ni.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xie, Q., Ni, P., Ersson, M. et al. Numerical Simulations on Dynamic Behavior of Multiphase Flow and Heat Transfer in a Round Mold with a Swirling Flow Tundish Design. Metall Mater Trans B 53, 3197–3214 (2022). https://doi.org/10.1007/s11663-022-02599-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11663-022-02599-y

Navigation