Skip to main content
Log in

Duplex aging of metastable beta titanium alloys: A Review

  • Review
  • Published:
Transactions of the Indian Institute of Metals Aims and scope Submit manuscript

Abstract

Metastable beta titanium alloys have emerged as a subject of intense research in the last three to four decades. They are epitomized by heat treatability to high strength, high hardenability, and excellent workability. Heat treatment comprises solution treating and aging. In the recent years, there has been much interest in carrying out aging in two steps, rather than in a single step. Duplex aging on different grades of beta alloys resulted in improved microstructure and better combination of mechanical properties. Duplex aging suppresses formation of grain boundary alpha and eliminates precipitate-free zones, leading to improved ductility and fatigue life. There is thus a strong case to adopt duplex aging. A low heating rate to aging temperature may be tantamount to duplex aging. There are a few grades, where duplex aging impairs ductility, becoming counterproductive. The paper reviews the subject of duplex aging of metastable titanium alloys.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. J Mater Eng Perform 14 (2005) 681.

  2. Banerjee D and Williams J C, Acta Mater 61 (2013) 844.

    Article  CAS  Google Scholar 

  3. Cotton J D, Briggs R D, Boyer R R, Tamirisakandala S, Russo P, Shchetnikov N, and Fanning J C, J Min Met Mat S 67 (2015) 1281.

    Article  CAS  Google Scholar 

  4. Nyakana S, Fanning J, and Boyer R, J Mater Eng Perform 14 (2005) 799.

    Article  CAS  Google Scholar 

  5. Boyer R R and Rosenberg H W, Beta titanium alloys in the 80’s, in Proceedings of the Symposium, Metallurgical Society of AIME, (1983).

  6. Eylon D, Boyer R R, and Koss D A, Beta titanium alloys in the 1990's. United States in annual meeting of the Minerals, Metals and Materials Society (TMS), Denver, CO (United States), (1993).

  7. Kolli R P and Devaraj A, Metals (Basel) 8 (2018) 1.

    Article  Google Scholar 

  8. Rajaraman S, Manivasagam G, and Muktinutalapati N, Trans Indian Inst Met 70 (2016).

  9. Yumak N and Aslantaş K, J Mater Res Technol 9 (2020) 15360.

    Article  CAS  Google Scholar 

  10. S Sudhagara Rajan, Vishnu, Jithin, Manivasagam, Geetha & Muktinutalapati, Nageswara. Heat Treatment of Metastable Beta Titanium Alloys. In book: Metal Heat Treatments, Publisher: IntechOpen

  11. Jiang H, Du Z & Wang D. Metals (Basel) 11 (2021).

  12. Du ZX, Ma Y, Liu F, Zhao X, Chen Y, Li G, et al., Mater Sci Eng A 754 (2019).

  13. Imiwa N, Arai A, Takatori H & Ito K. ISIJ Int 31 (1991) 856.

    Article  Google Scholar 

  14. Boyer RR, Rack HJ & Venkatesh V. Mater Sci Eng A 243 (1998) 97.

    Article  Google Scholar 

  15. Kazanjian SM & Starke EA. Int J Fatigue 21 (1999) 127.

    Article  Google Scholar 

  16. Furuhara T, Maki T, and Makino T, J Mater Process Technol 117 (2001) 318.

    Article  CAS  Google Scholar 

  17. Ivasishin O M, Markovsky P E, Yu Matviychuk V, Semiatin S L, Ward C H, and Fox S, J Alloy Compd 457 (2008) 296.

    Article  CAS  Google Scholar 

  18. Schmidt P, El-Chaikh A, and Christ H J, Metall Mater Trans A-physical Metall Mater Sci - Met MATER TRANS A 42 (2011) 2652.

    Article  CAS  Google Scholar 

  19. Chaikh A, Schmidt P, and Christ H J, Procedia Eng 2 (2010) 1973.

    Article  Google Scholar 

  20. Santhosh R, Geetha M, Saxena V K, Rao N, and M, Int J Fatigue 73 (2015) 88.

  21. Santhosh R, Geetha M, Saxena V K, and Nageswararao M, J Alloys Compd 605 (2014) 222.

    Article  CAS  Google Scholar 

  22. Campanelli L, Silva P, and Bolfarini C, Mater Sci Eng A 658 (2016).

  23. Yumak N, Aslantaş K & Çetkin A. J Test Eval 49 (2020).

  24. Ji X, Ge P, Xiang S, and Tan Y, Materials (Basel), Switzerland, 14 (2021) 209.

    CAS  Google Scholar 

  25. Ren L, Han X W, Ma W, Zhou C, and L, Mater Charact 144 (2018) 1.

  26. Salvador C, Opini V, Mello M, and Caram R, Materials Science and Engineering: A 743 (2018) 716.

    Article  Google Scholar 

  27. Mantri SA, Choudhuri D & Alam T. Scr Mater 154 (2018) 139–144.

    Article  CAS  Google Scholar 

  28. Krugmann H E, Gregory J K, in Titanium Aluminides and Alloys, (eds) Kim Y W, and Boyer R R, TMS, Warrendale (1991) p 549.

  29. Wagner L, Gregory J K, in Beta Titanium Alloys in the 1990’s, (eds) Eylon D, Boyer R R, Koss D A, TMS, Warrendale (1993) p 199..

  30. Wain N, Hao XJ, Ravi GA & Wu X. Mater Sci Eng A 527 (2010) 7673.

    Article  Google Scholar 

  31. Williams J C., Hickman B S., and Leslie D H, Metall Trans 2 (1971) 477.

    Article  CAS  Google Scholar 

  32. FH Froes D Eylon HB Bomberger 1985 Titanium Technology: Present Status and Future Trends University of Virginia Titanium Development Association 0935297006

  33. Lutjering G, and Williams J C, Titanium: Engineering Materials and Processes, second (ed.), Springer-Verlag Berlin, Heidelberg (2007) p 40.

  34. Ivasishin O M, Markovsky P E, Semiatin S L, and Ward C H, Mater Sci Eng A 405 (2005) 296.

    Article  Google Scholar 

  35. Nag S, Banerjee R, Srinivasan R, Hwang JY, Harper M, Fraser HL, Acta Mater 57 (2009) 2136.

    Article  CAS  Google Scholar 

  36. Dehghan-Manshadi A and Dippenaar R J, Mater Sci Eng A 528 (2011) 1833.

    Article  Google Scholar 

  37. Wu X, del Prado J, Li Q, Huang A, Hu D, Loretto MH, Acta Mater 54 (2006) 5433.

    Article  CAS  Google Scholar 

  38. Pande A, Sainis S, Rajaraman S, Manivasagam G, and Nageswara Rao M, Adv Mater Stru Mech Engg 1025–1026 (2014) 445.

    Google Scholar 

  39. Du Z, Xiao S, Xu L, Tian J, Kong F, Chen Y, Mater Des 55 (2014) 183.

    Article  CAS  Google Scholar 

  40. Chesnutt J C and Froes F H, Met Trans, A. United States 8 (1977) 1013.

    Google Scholar 

  41. Duerig T W, and Williams J C, in Overview: Microstructure and Properties of Beta Titanium Alloys, in: Beta Titanium Alloys of the 1980’s, (eds) Boyer R R, and Rosenberg H W, TMS, Warrendale, PA, USA (1984) p 19.

  42. Terlinde G T, Duerig T W, and Williams J C, Metall Trans A 14 (1983) 2101.

    Article  Google Scholar 

  43. Terlinde G & Fischer G. Beta Titanium Alloys. Titanium and Titanium Alloys (John Wiley & Sons) (2003), 37

  44. Kawabe Y, and Muneki S, Strengthening Capability of Beta Titanium Alloys, in: Beta Titanium Alloys of the 1990’s, (eds) Eylon D, Boyer R R, and Koss D A, TMS, Warrendale, PA, USA (1993) p 187.

  45. Sauer S, and Lütjering G, Mater Sci Eng A, 319–321 (2001) 393.

    Article  Google Scholar 

  46. Terlinde, G., Witulski, T. and Fischer, G. Forging of Titanium. In Titanium and Titanium Alloys (eds C. Leyens and M. Peters) (2003).

  47. Zhou Y, Multimed Inf Netw Secur Int Conf 2 (2009) 57.

    Google Scholar 

  48. Bhattacharjee A, Joshi V, and Gogia A, Sci Technol 1 (1999) 529.

    Google Scholar 

  49. Styczynski A, Kiese J and Wagner L, in Fatigue ’96, (eds) Lütjering G, and Nowack H, Pergamon Press (1996) p 911.

  50. Rohit B and Muktinutalapati N, J Phys Conf Ser 843 (2017) 12048.

    Article  Google Scholar 

Download references

Acknowledgements

The authors are grateful to the management of Vellore Institute of Technology for permitting publication of this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Nageswara Rao.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kirthika, A.M.A., Rao, M.N. & Manivasagam, G. Duplex aging of metastable beta titanium alloys: A Review. Trans Indian Inst Met 75, 2985–2996 (2022). https://doi.org/10.1007/s12666-022-02696-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12666-022-02696-1

Keywords

Navigation