Skip to main content
Log in

Primordial magnetic fields in theories of gravity with non-minimal coupling between curvature and matter

  • Research Article
  • Published:
General Relativity and Gravitation Aims and scope Submit manuscript

Abstract

The existence of magnetic fields in the universe is unmistakable. They are observed at all scales from stars to galaxy clusters. However, the origin of these fields remains enigmatic. It is believed that magnetic field seeds may have emerged from inflation, under certain conditions. This possibility is analised in the context of an alternative theory of gravity with non-minimal coupling between curvature and matter. We find, through the solution of the generalised Maxwell equations in the context of non-minimal models, that for general slow-roll inflationary scenarios with low reheating temperatures, \(T_{RH}\simeq 10^{10}\hbox {GeV}\), the generated magnetic fields can be made compatible with observations at large scales, \(\lambda \sim 1 Mpc\).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Kronberg, P.P.: Extragalatic magnetic fields. Rep. Prog. Phys. 57, 325 (1994)

    Article  ADS  Google Scholar 

  2. Bochenek, C.D., Ravi, V., Belov, K.V., Hallinan, G., Kocz, J., Kulkarni, S.R., et al.: A fast radio burst associated with a galactic magnetar. Nature 587, 59 (2020)

    Article  ADS  Google Scholar 

  3. Barrow, J.D., Ferreira, P.G., Silk, J.: Constraints on a primordial magnetic field. Phys. Rev. Lett. 78, 3610 (1997)

    Article  ADS  Google Scholar 

  4. Enqvist, K.: Primordial magnetic fields. Int. J. Modern Phys. D 7, 331 (1998)

    Article  ADS  MATH  Google Scholar 

  5. Widrow, L.M.: Origin of galactic and extragalactic magnetic fields. Rev. Mod. Phys. 74, 775 (2002)

    Article  ADS  Google Scholar 

  6. Giovannini, M.: The magnetized universe. Int. J. Modern Phys. D 13, 391 (2004)

    Article  ADS  MATH  Google Scholar 

  7. Bamba, K., Yokoyama, J.: Large-scale magnetic fields from dilaton inflation in noncommutative spacetime. Phys. Rev. D 70, 083508 (2004)

    Article  ADS  Google Scholar 

  8. Giovannini, M.: Magnetic fields, strings and cosmology. Lect. Notes Phys. 737, 863 (2006)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  9. Parker, E.N.: Cosmological Magnetic Fields. Their Origin and Their Activity. Oxford University Press, Oxford (1979)

    Google Scholar 

  10. Zeldovich, Y.B., Ruzmaikin, A.A., Sokoloff, D.D.: Magnetic Fields in Astrophysics. Gordon and Breach, New York (1983)

    Google Scholar 

  11. Ruzmaikin, A.A., Shukurov, A.A., Sokoloff, D.D.: Magnetic Fields of Galaxies. Kluwer, Dordrecht (1988)

    Book  MATH  Google Scholar 

  12. Ferrière, K.: Interstellar magnetic fields in the galactic center region. Astron. Astrophys. 505, 1183 (2009)

    Article  ADS  MATH  Google Scholar 

  13. Turner, M.S., Widrow, L.M.: Inflation-produced, large-scale magnetic fields. Phys. Rev. D 37, 2743 (1988)

    Article  ADS  Google Scholar 

  14. Neronov, A., Vovk, I.: Evidence for strong extragalactic magnetic fields from fermi observations of tev blazars. Science 328, 73 (2010)

    Article  ADS  Google Scholar 

  15. Tavecchio, F., Ghisellini, G., Foschini, L., Bonnoli, G., Ghirlanda, G., Coppi, P.: The intergalactic magnetic field constrained by fermi/large area telescope observations of the tev blazar 1es 0229+200. Mon. Not. R. Astronom. Soc. Lett. 406, L70 (2010)

    ADS  Google Scholar 

  16. Caprini, C., Gabici, S.: Gamma-ray observations of blazars and the intergalactic magnetic field spectrum. Phys. Rev. D 91, 123514 (2015)

    Article  ADS  Google Scholar 

  17. Kandus, A., Kunze, K.E., Tsagas, C.G.: Primordial magnetogenesis. Phys. Rep. 505, 1 (2011)

    Article  ADS  Google Scholar 

  18. Durrer, R., Neronov, A.: Cosmological magnetic fields: their generation, evolution and observation. Astron. Astrophys. Rev. 21, 62 (2013)

    Article  ADS  Google Scholar 

  19. Barrow, J.D., Maartens, R., Tsagas, C.G.: Cosmology with inhomogeneous magnetic fields. Phys. Rep. 449, 131 (2007)

    Article  ADS  MathSciNet  Google Scholar 

  20. Brandenburg, A., He, Y., Kahniashvili, T., Rheinhardt, M., Schober, J.: Relic gravitational waves from the chiral magnetic effect. Astrophys. J. 911, 110 (2021)

    Article  ADS  Google Scholar 

  21. Kunze, K.E.: Cosmological magnetic fields. Plasma Phys. Control. Fusion 55, 124026 (2013)

    Article  ADS  Google Scholar 

  22. Starobinsky, A.A.: A new type of isotropic cosmological models without singularity. Phys. Lett. B 91, 99 (1980)

    Article  ADS  MATH  Google Scholar 

  23. Guth, A.H.: Inflationary universe: a possible solution to the horizon and flatness problems. Phys. Rev. D 23, 347 (1981)

    Article  ADS  MATH  Google Scholar 

  24. Linde, A.: A new inflationary universe scenario: a possible solution of the horizon, flatness, homogeneity, isotropy and primordial monopole problems. Phys. Lett. B 108, 389 (1982)

    Article  ADS  Google Scholar 

  25. Albrecht, A., Steinhardt, P.J.: Cosmology for grand unified theories with radiatively induced symmetry breaking. Phys. Rev. Lett. 48, 1220 (1982)

    Article  ADS  Google Scholar 

  26. Garretson, W.D., Field, G.B., Carrol, S.M.: Primordial magnetic fields from pseudo goldstone bosons. Phys. Rev. D 46, 5346 (1992)

    Article  ADS  Google Scholar 

  27. Ratra, B.: Cosmolofical seed magnetic field from inflation. Ap. J. Lett. 391, L1 (1992)

    Article  ADS  Google Scholar 

  28. Dolgov, A.D.: Breaking of conformal invariance and electromagnetic field generation in the universe. Phys. Rev. D 48, 2499 (1993)

    Article  ADS  Google Scholar 

  29. Bertolami, O., Mota, D.F.: Primordial magnetic fields via spontaneous breaking of lorentz invariance. Phys. Lett. B 455, 96 (1999)

    Article  ADS  Google Scholar 

  30. Bertolami, O., Monteiro, R.: Varying electromagnetic coupling and primordial magnetic fields. Phys. Rev. D 71, 123525 (2005)

    Article  ADS  Google Scholar 

  31. Bamba, K., Elizalde, E., Odintsov, S.D., Paul, T.: Inflationary magnetogenesis with reheating phase from higher curvature coupling. JCAP 04, 009 (2021). [arxiv:2012.12742]

    Article  ADS  MathSciNet  MATH  Google Scholar 

  32. Chakraborty, S., Pal, S., SenGupta, S.: Hilltop inflation and generation of helical magnetic field. Universe 8, 26 (2022)

    Article  ADS  Google Scholar 

  33. Kothari, R., Saketh, M.V.S., Jain, P.: Torsion driven inflationary magnetogenesis. Phys. Rev. D 102, 024008 (2020)

    Article  ADS  MathSciNet  Google Scholar 

  34. Gasperini, M., Giovannini, M., Veneziano, G.: Primordial magnetic fields from string cosmology. Phys. Rev. Lett. 75, 3796 (1995)

    Article  ADS  Google Scholar 

  35. Martin, J., Yokoyama, J.: Generation of large-scale magnetic fields in single-field inflation. JCAP 01, 025 (2008)

    Article  ADS  Google Scholar 

  36. Atmjeet, K., Pahwa, I., Seshadri, T.R., Subramanian, K.: Cosmological magnetogenesis from extra-dimensional gauss bonnet gravity. Phys. Rev. D 89, 063002 (2014)

    Article  ADS  Google Scholar 

  37. Capozziello, S., De Laurentis, M.: Extended theories of gravity. Phys. Rep. 509, 167 (2011)

    Article  ADS  MathSciNet  Google Scholar 

  38. Clifton, T., Ferreira, P.G., Padilla, A., Skordis, C.: Modified gravity and cosmology. Phys. Rep. 513, 1 (2012)

    Article  ADS  MathSciNet  Google Scholar 

  39. Bertolami, O.: What if general relativity is not the theory? Mem. S. A. It. 75, 282 (2011). [arxiv:1112.2048]

    Google Scholar 

  40. Bertolami, O., Boehmer, C.G., Harko, T., Lobo, F.S.N.: Extra force in f(r) modified theories of gravity. Phys. Rev. D 75, 104016 (2007)

    Article  ADS  MathSciNet  Google Scholar 

  41. Gomes, C., Rosa, J.G., Bertolami, O.: Inflation in non-minimal matter-curvature coupling theories. JCAP 06, 021 (2017)

    Article  ADS  MATH  Google Scholar 

  42. Alho, A., Mena, F.C.: Pre-inflationary homogeneization of scalar field cosmologies. Phys. Lett. B 703, 537 (2011)

    Article  ADS  Google Scholar 

  43. Bertolami, O., Páramos, J.: Modified friedmann equation from nonminimally coupled theories of gravity. Phys. Rev. D 89, 044012 (2014)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

FCM thanks support from FCT/Portugal through CAMGSD, IST-ID, project UIDB/04459/2020 and UIDP/04459/2020 as well as CMAT, Univ. Minho, through project UIDB/00013/2020 and UIDP/00013/2020 and FEDER Funds COMPETE.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Orfeu Bertolami.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bertolami, O., Lima, M.M. & Mena, F.C. Primordial magnetic fields in theories of gravity with non-minimal coupling between curvature and matter. Gen Relativ Gravit 54, 82 (2022). https://doi.org/10.1007/s10714-022-02968-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10714-022-02968-7

Keywords

Navigation