Skip to main content
Log in

Reductive amination of n-hexanol to n-hexylamine over Ni-Ce/γ-Al2O3 catalysts

  • Research Article
  • Published:
Frontiers of Chemical Science and Engineering Aims and scope Submit manuscript

Abstract

The amination of alkyl alcohols is one of the most promising paths in synthesis of aliphatic amines. Herein, cerium doped nickel-based catalysts were synthesized and tested in a gas-phase amination of n-hexanol to n-hexylamine. It was found that the activity of the Ni/γ-Al2O3 catalyst is significantly improved by doping an appropriate amount of cerium. The presence of cerium effectively inhibits the agglomeration of nickel particle, resulting in better Ni dispersion. As Ni particle size plays critical role on the catalytic activity, higher turnover frequency of n-hexanol amination was achieved. Cerium doping also improves the reduction ability of nickel and enhances the interactions between Ni and the catalyst support. More weak acid sites were also found in those cerium doped catalysts, which promote another key step—ammonia dissociative adsorption in this reaction system. The overall synergy of Ni nanoparticles and acid sites of this Ni-Ce/γ-Al2O3 catalyst boosts its superior catalytic performance in the amination of n-hexanol.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Hayes K. Industrial process for manufacturing amines. Applied Catalysis A: General, 2001, 221(1–2): 187–195

    Article  CAS  Google Scholar 

  2. Wolfe J P, Wagaw S, Marcoux J F, Buchwald S L. Rational development of practical catalysts for aromatic carbon-nitrogen bond formation. Accounts of Chemical Research, 1998, 31(12): 805–818

    Article  CAS  Google Scholar 

  3. Orlandi M, Brenna D, Harms R, Jost S, Benaglia M. Recent developments in the reduction of aromatic and aliphatic nitro compounds to amines. Organic Process Research & Development, 2018, 22(4): 430–445

    Article  CAS  Google Scholar 

  4. Zhang D, Tao L, Wang Q, Wang T. A facile synthesis of cost-effective triphenylamine-containing porous organic polymers using different crosslinkers. Polymer, 2016, 82: 114–120

    Article  CAS  Google Scholar 

  5. Bernoud E, Lepori C, Mellah M, Schulz E, Hannedouche J. Recent advances in metal free- and late transition metal-catalysed hydroamination of unactivated alkenes. Catalysis Science & Technology, 2015, 5(4): 2017–2037

    Article  CAS  Google Scholar 

  6. Wen J B, You K Y, Chen M J, Jian J, Zhao F F, Liu P L, Ai Q H, Luo H A. Mesoporous silicon sulfonic acid as a highly efficient and stable catalyst for the selective hydroamination of cyclohexene with cyclohexylamine to dicyclohexylamine in the vapor phase. Frontiers of Chemical Science and Engineering, 2021, 15(3): 654–665

    Article  CAS  Google Scholar 

  7. Liang G, Wang A, Li L, Xu G, Yan N, Zhang T. Production of primary amines by reductive amination of biomass-derived aldehydes/ketones. Angewandte Chemie International Edition, 2017, 56(11): 3050–3054

    Article  CAS  PubMed  Google Scholar 

  8. Schwoegler E J, Adkins H. Preparation of certain amines. Journal of the American Chemical Society, 1939, 61(12): 3499–3502

    Article  CAS  Google Scholar 

  9. Pera-Titus M, Shi F. Catalytic amination of biomass-based alcohols. ChemSusChem, 2014, 7(3): 720–722

    Article  CAS  PubMed  Google Scholar 

  10. Ho C R, Defalque V, Zheng S, Bell A T. Propanol amination over supported nickel catalysts: reaction mechanism and role of the support. ACS Catalysis, 2019, 9(4): 2931–2939

    Article  CAS  Google Scholar 

  11. Guillena G, Ramon D J, Yus M. Hydrogen autotransfer in the N-alkylation of amines and related compounds using alcohols and amines as electrophiles. Chemical Reviews, 2010, 110(3): 1611–1641

    Article  CAS  PubMed  Google Scholar 

  12. Veefkind V A, Lercher J A. On the elementary steps of acid zeolite catalyzed amination of light alcohols. Applied Catalysis A: General, 1999, 181(2): 245–255

    Article  CAS  Google Scholar 

  13. Liang G, Zhou Y, Zhao J, Khodakov A Y, Ordomsky V V. Structure-sensitive and insensitive reactions in alcohol amination over nonsupported Ru nanoparticles. ACS Catalysis, 2018, 8(12): 11226–11234

    Article  CAS  Google Scholar 

  14. Fang L, Yan Z, Vits K, Southward B, Pera-Titus M. Nanoceria-promoted low Pd—Ni catalyst for the synthesis of secondary amines from aliphatic alcohols and ammonia. Catalysis Science & Technology, 2019, 9(5): 1215–1230

    Article  CAS  Google Scholar 

  15. Yue C J, Di K, Gu L P, Zhang Z W, Ding L L. Selective amination of 1,2-propanediol over Co/La3O4 catalyst prepared by liquid-phase reduction. Molecular Catalysis, 2019, 477: 110539

    Article  Google Scholar 

  16. Cho J H, Park J H, Chang T S, Kim J E, Shin C H. Reductive amination of 2-propanol to monoisopropylamine over Ni/γ-Al2O3 catalysts. Catalysis Letters, 2013, 143(12): 1319–1327

    Article  CAS  Google Scholar 

  17. Jv X, Sun S, Zhang Q, Du M, Wang L, Wang B. Efficient and mild reductive amination of carbonyl compounds catalysed by dual-function palladium nanoparticles. ACS Sustainable Chemistry & Engineering, 2020, 8(3): 1618–1626

    Article  CAS  Google Scholar 

  18. Yan Z, Tomer A, Perrussel G, Ousmane M, Katryniok B, Dumeignil F, Ponchel A, Liebens A, Pera-Titus M. Pd/CeO2 “H2 pump” for the direct amination of alcohols. ChemCatChem, 2016, 8(21): 3347–3352

    Article  Google Scholar 

  19. Zhang J, Kong L, Chen Y, Huang H, Zhang H, Yao Y, Xu Y, Xu Y, Wang S, Ma X, Zhao Y. Enhanced synergy between Cu0 and Cu+ on nickel doped copper catalyst for gaseous acetic acid hydrogenation. Frontiers of Chemical Science and Engineering, 2021, 15(3): 666–678

    Article  CAS  Google Scholar 

  20. Pan D, Zhou J H, Peng B, Wang S P, Zhao Y J, Ma X B. The cooperation effect of Ni and Pt in the hydrogenation of acetic acid. Frontiers of Chemical Science and Engineering, 2022, 16(3): 397–407

    Article  CAS  Google Scholar 

  21. Li S, Wen M, Chen H, Ni Z, Xu J, Shen J. Amination of isopropanol to isopropylamine over a highly basic and active Ni/LaAlSiO catalyst. Journal of Catalysis, 2017, 350: 141–148

    Article  CAS  Google Scholar 

  22. Hong E, Bang S, Cho J H, Jung K D, Shin C H. Reductive amination of isopropanol to monoisopropylamine over Ni—Fe/γ-Al2O3 catalysts: synergetic effect of Ni—Fe alloy formation. Applied Catalysis A: General, 2017, 542: 146–153

    Article  CAS  Google Scholar 

  23. Ma Z, Wang J, Li J, Wang N, An C, Sun L. Propane dehydrogenation over Al2O3 supported Pt nanoparticles: effect of cerium addition. Fuel Processing Technology, 2014, 128: 283–288

    Article  CAS  Google Scholar 

  24. Gonzalez J J, Da Costa-Serra J F, Chica A. Biogas dry reforming over Ni-Ce catalyst supported on nanofibered alumina. International Journal of Hydrogen Energy, 2020, 45(40): 20568–20581

    Article  CAS  Google Scholar 

  25. Liu H, Zou X, Wang X, Lu X, Ding W. Effect of CeO2 addition on Ni/Al2O3 catalysts for methanation of carbon dioxide with hydrogen. Journal of Natural Gas Chemistry, 2012, 21(6): 703–707

    Article  CAS  Google Scholar 

  26. Tomer A, Zhen Y, Ponchel A, Pera-Titus M. Mixed oxides supported low-nickel formulations for the direct amination of aliphatic alcohols with ammonia. Journal of Catalysis, 2017, 356: 133–146

    Article  CAS  Google Scholar 

  27. Cheng D, Wang Z, Xia Y, Wang Y, Zhang W, Zhu W. Catalytic amination of diethylene glycol with tertiarybutylamine over Ni—Al2O3 catalysts with different Ni/Al ratios. RSC Advances, 2016, 6(104): 102373–102380

    Article  CAS  Google Scholar 

  28. Shimizu K I, Kon K, Onodera W, Yamazaki H, Kondo J N. Heterogeneous Ni catalyst for direct synthesis of primary amines from alcohols and ammonia. ACS Catalysis, 2013, 3(1): 112–117

    Article  CAS  Google Scholar 

  29. Zielinski J. Morphology of nickel/alumina catalysts. Journal of Catalysis, 1982, 76(1): 157–163

    Article  CAS  Google Scholar 

  30. Li X, Tian J, Liu H, Tang C, Xia C, Chen J, Huang Z. Effective synthesis of 5-amino-1-pentanol by reductive amination of biomass-derived 2-hydroxytetrahydropyran over supported Ni catalysts. Chinese Journal of Catalysis, 2020, 41(4): 631–641

    Article  CAS  Google Scholar 

  31. Chrysostomou D, Flowers J, Zaera F. The thermal chemistry of ammonia on Ni(110). Surface Science, 1999, 439(1–3): 34–48

    Article  CAS  Google Scholar 

  32. Sima D, Wu H, Tian K, Xie S, Liu Y Q. Enhanced low temperature catalytic activity of Ni/Al—Ce0.8Zr0.2O2 for hydrogen production from ammonia decomposition. International Journal of Hydrogen Energy, 2020, 45(16): 9342–9352

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We appreciate the National Natural Science Foundation of China for the financial support (Grant No. 21878227).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yan Xu or Yujun Zhao.

Electronic Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, P., Huang, H., Wang, Z. et al. Reductive amination of n-hexanol to n-hexylamine over Ni-Ce/γ-Al2O3 catalysts. Front. Chem. Sci. Eng. 17, 82–92 (2023). https://doi.org/10.1007/s11705-022-2181-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11705-022-2181-z

Keywords

Navigation