Skip to main content
Log in

Measurement of the Parameters of a Segmentoid Electrostatic Analyzer of Low-Energy Charged Particles

  • Published:
Journal of Surface Investigation: X-ray, Synchrotron and Neutron Techniques Aims and scope Submit manuscript

Abstract

The segmentoid electrostatic analyzer is intended for the detection of low-energy charged particles of magnetospheric plasma. The results of measuring the main characteristics of the spectrometric module: the energy-geometric coefficient, the dependence of transmission functions on entrance angles, and the analyzer constant, are presented. The calculated values of the transmission function vs the entrance angles are in good agreement with the experimental results. A technique for calibrating modules intended for studying magnetospheric plasma parameters is developed and described. Use of the developed technique also makes it possible not only to measure the efficiency of secondary-electron multipliers in recording electrons in a wide energy range (0.01–20 keV), but also to certify tritium electron sources used for calibrating spectrometric equipment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.
Fig. 11.
Fig. 12.

Similar content being viewed by others

REFERENCES

  1. Calibration of Particle Instruments in Space Physics, Ed. by M. Wüest, D. S. Evans, and R. von Steiger (Int. Space Sci. Inst., Bern, 2007).

    Google Scholar 

  2. A. M. Cruise, J. A. Bowles, T. J. Patrick, and C. V. Goodall, Principles of Space Instrument Design (Cambridge Univ. Press, Cambridge, 1998).

    Book  Google Scholar 

  3. L. S. Gorn and B. I. Khazanov, Spectrometry of ionizing radiation on a spacecraft (Atomizdat, Moscow, 1979) [in Russian].

    Google Scholar 

  4. B. V. Mar’in and A. G. Polandov, Instrum. Exp. Tech. 45, 359 (2002).

    Article  Google Scholar 

  5. L. S. Novikov, A. A. Makletsov, V. V. Sinolits, et al., IEEE Trans. Plasma Sci. 47, 3931 (2019).

    Article  CAS  Google Scholar 

  6. Isotopes: Properties, Production, Application, Ed. by V. Yu. Baranov (Fizmatlit, Moscow, 2005), Vol. 2.

    Google Scholar 

  7. A. F. Belovodskii, V. K. Gaevoi, V. I. Grishmanovskii, Tritium (Energoatomizdat, Moscow, 1985) [in Russian].

    Google Scholar 

  8. S. Mertens, T. Lasserre, S. Groh, et al., J. Cosmol. Astropart. Phys. 2015, 020 (2015).

  9. H. Kerkow, B. V. Marjin, V. P. Petukhov, I. A. Rubinshtein, and R. Stolle, Prib. Tekh. Eksp., No. 1, 89 (1996).

  10. L. A. Baranova and S. Ya. Yavor, Zh. Tekh. Fiz. 58, 217 (1988).

    Google Scholar 

  11. J. L. Erskine, in Atomic, Molecular, and Optical Physics: Charged Particles, Ed. by F. B. Dunning and R. G. Hulet (Academic, San Diego, 1995), p. 209.

    Google Scholar 

  12. H. Bruining, Physics and Applications of Secondary Electron Emission (McGraw-Hill, London, 1954).

    Google Scholar 

  13. R. S. Gao, P. S. Gibner, J. H. Newman, K. A. Smith, R. F. Stebbings, Rev. Sci. Instrum. 55, 1756 (1984).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. P. Petukhov.

Ethics declarations

I declare that I have no conflicts of interest.

Additional information

Translated by M. Shmatikov

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Petukhov, V.P. Measurement of the Parameters of a Segmentoid Electrostatic Analyzer of Low-Energy Charged Particles. J. Surf. Investig. 16, 626–632 (2022). https://doi.org/10.1134/S1027451022040309

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1027451022040309

Keywords:

Navigation