Skip to main content
Log in

Determination of Local Residual Stress on Post-Treated TiAlN-Coated Tungsten Carbide Tools

  • Published:
Journal of Surface Investigation: X-ray, Synchrotron and Neutron Techniques Aims and scope Submit manuscript

Abstract

Through the use of tool coatings, a significant increase in tool life is possible. Particularly in the case of coatings obtained by physical vapor deposition, compressive residual stresses show a clearly positive influence on the wear behavior of coated carbide tools. In addition to being influenced by the coating process itself, the residual stress state of the coating can also be influenced by post-treatment processes like heat treatment or wet blasting. Compressive residual stresses can be measured using known X-ray diffraction techniques. However, these methods are very limited on strongly curved surfaces such as cutting edges. Raman spectroscopy has great potential for measurements in such areas. In order to use the Raman method to measure residual stresses on cutting tools, the TiAlN coatings were subjected to wet blasting and heat treatment. The residual stress state was determined by X-ray diffraction using the sin2ψ method and the depth-resolved scattering vector method. Then, measurements of Raman scattering of light were carried out and the peak shift of the transversal/longitudinal optical mode in the Raman spectrum was measured. Finally, the peak shift in the cutting edge area was determined. The investigations show that residual stresses mechanically induced by wet blasting can be reliably detected by Raman spectroscopy. Heat treatment effects are also clearly detectable, but here the correlation between peak shift and residual stresses determined by X-ray diffraction methods differs from the previous results due to the change in the crystal lattice dimensions. The residual stresses in the cutting edge area, converted from Raman peak shifts, show values of a plausible order of magnitude.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.

Similar content being viewed by others

REFERENCES

  1. S. V. Konovalov, V. E. Kormyshev, V. E. Gromov, Y. F. Ivanov, E. V. Kapralov, and A. P. Semin, J. Surf. Invest.: X-ray, Synchrotron Neutron Tech. 10, 1119 (2016). https://doi.org/10.1134/S1027451016050098

    Article  CAS  Google Scholar 

  2. A. T. Tabrizi and H. Aghajani, J. Surf. Invest.: X-ray, Synchrotron Neutron Tech. 15, 1217 (2021). https://doi.org/10.1134/S1027451021060197

    Article  Google Scholar 

  3. K. Bobzin, Oberflächentechnik für den Maschinenbau (Wiley, Weinheim, 2013).

    Google Scholar 

  4. B. Breidenstein, Oberflächen und Randzonen hoch belasteter Bauteile, Postdoctoral Thesis (Gottfried Wilhelm Leibniz Universität, Hannover, 2011).

  5. F. Klocke, C. Gorgels, A. Stuckenberg, and E. Bouzakis, Key Eng. Mater. 428, 23 (2010). doi 10.4028/www.scientific.net/KEM.438.23

  6. B. Breidenstein and B. Denkena, CIRP Ann. 62, 67 (2013). https://doi.org/10.1016/j.cirp.2013.03.101

    Article  Google Scholar 

  7. C. Genzel and W. Reimers, Z. Metallkd. 94, 655 (2003). https://doi.org/10.3139/146.030655

    Article  CAS  Google Scholar 

  8. J. M. Plöger, Randzonenbeeinflussung durch Hochgeschwindigkeitsdrehen, Doctoral Thesis (Universität Hannover, Hannover, 2002).

  9. G.-P. Xu, G. Xu, Z.-M. Yin, and R.-C. Chiang, Adv. Mater. Res. 76–78, 690 (2009). doi 10.4028/www.scientific.net/AMR.76-78.690

  10. C. P. Constable, D. B. Lewis, J. Yarwood, and W. D. Münz, Surf. Coat. Technol. 184, 291 (2004). https://doi.org/10.1016/j.surfcoat.2003.10.014

    Article  CAS  Google Scholar 

  11. M. Ahlgren and H. Blomqvist, Surf. Coat. Technol. 200, 157 (2005). https://doi.org/10.1016/j.surfcoat.2005.02.078

    Article  CAS  Google Scholar 

  12. A. C. Vlasveld, S. G. Harris, E. D. Doyle, D. B. Lewis, and W. D. Munz, Surf. Coat. Technol. 149, 217 (2002). https://doi.org/10.1016/S0257-8972(01)01448-7

    Article  CAS  Google Scholar 

  13. H. Oettel, R. Wiedemann, and S. Preißler, Surf. Coat. Technol. 74–75, 273 (1995). https://doi.org/10.1016/0257-8972(95)08235-2

    Article  Google Scholar 

  14. C. Bergmann, Surf. Coat. Technol. 36, 243 (1988). https://doi.org/10.1016/0257-8972(88)90154-5

    Article  Google Scholar 

  15. E. Bouzakis, Steigerung der Leistungsfähigkeit PVD-beschichteter Hartmetallwerkzeuge durch Strahlbehandlung, Doctoral Thesis (RWTH Aachen Univ., Aachen, 2008).

  16. G. Skordaris, K. D. Bouzakis, T. Kotsanis, P. Charalampous, E. Bouzakis, B. Breidenstein, B. Bergmann, and B. Denkena, CIRP J. Manuf. Sci. Technol. 18, 145 (2016). https://doi.org/10.1016/j.cirpj.2016.11.003

    Article  Google Scholar 

  17. A. Kimura, Surf. Coat. Technol. 120–121, 438 (1999). https://doi.org/10.1016/S0257-8972(99)00491-0

    Article  Google Scholar 

  18. C. P. Constable, Raman Microscopic Studies of PVD Deposited Hard Ceramic Coatings, Doctoral Thesis (Sheffield Hallam Univ., Sheffield, 2000).

  19. S. Ono, K. Mibe, N. Hirao, and Y. Ohishi, J. Phys. Chem. Solids 76, 120 (2015). https://doi.org/10.1016/j.jpcs.2014.09.001

    Article  CAS  Google Scholar 

  20. C. P. Constable, J. Yarwood, and W. D. Münz, Surf. Coat. Technol. 116–119, 155 (1999). https://doi.org/10.1016/S0257-8972(99)00072-9

    Article  Google Scholar 

  21. H. C. Barshilia, M. S. Surya Parakash, A. Jain, and K. S. Rajam, Vacuum 77, 196 (2005). https://doi.org/10.1016/j.vacuum.2004.08.020

    Article  CAS  Google Scholar 

  22. J. M. Andersson, J. Vetter, J. Müller, and J. Sjölen, Surf. Coat. Technol. 240, 211 (2014). https://doi.org/10.1016/j.surfcoat.2013.12.018

    Article  CAS  Google Scholar 

  23. A. Debelle, G. Abadias, A. Michel, and C. Jaouen, Appl. Phys. Lett. 84, 5034 (2004) https://doi.org/10.1063/1.1763637

    Article  CAS  Google Scholar 

  24. D. Tuschel, Spectroscopy 34 (9), 10 (2019).

    Google Scholar 

  25. L. Spieß, G. Teichert, R. Schwarzer, H. Behnken, and C. Genzel, Moderne Röntgenbeugung (Vieweg Teubner, Berlin, 2009).

    Book  Google Scholar 

Download references

Funding

The authors would like to thank the German Research Foundation (DFG) for funding research project BR 2967/11-1 BE1720/41-1 “Effects of cutting edge residual stresses on the wear behavior of PVD-coated cutting tools.”

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. Vogel.

Ethics declarations

The authors declare that they have no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Breidenstein, B., Vogel, N., Behrens, H. et al. Determination of Local Residual Stress on Post-Treated TiAlN-Coated Tungsten Carbide Tools. J. Surf. Investig. 16, 663–671 (2022). https://doi.org/10.1134/S1027451022040231

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1027451022040231

Keywords:

Navigation