Skip to main content
Log in

Energy and Transport Lengths for Describing Volume of Resist Modification in Ion-Beam Lithography

  • Published:
Journal of Surface Investigation: X-ray, Synchrotron and Neutron Techniques Aims and scope Submit manuscript

Abstract

One of the ways to use a focused ion beam in lithographic processes to create nanostructures is through the exposure of special sensitive materials, i.e., resists. As a result of exposure, the solubility of such a material increases (“positive” resist) or, conversely, decreases (“negative” resist). Subsequent selective irradiation and development of the resist make it possible to create a predetermined pattern on the substrate. This work is aimed at developing the theoretical foundations for this ion lithography method. A practically important case of stopping heavy ions in an organic resist, the average atomic mass of which is much less than the mass of the incident ion, is considered. Expressions for the “energy” and transport lengths of ions are obtained. The calculations are carried out assuming a power-law interaction potential. The “energy” length characterizes the depth of penetration of ions into the material, and the transport length is related to beam expansion due to scattering. Therefore, these lengths are the main characteristics of the zone in which the ion-beam energy is absorbed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.

Similar content being viewed by others

REFERENCES

  1. M. Komuro, N. Atoda, and H. Kawakatsu, J. Electrochem. Soc.: Solid State Sci. Technol. 126, 483 (1979). https://doi.org/10.1149/1.2129067

    Article  CAS  Google Scholar 

  2. R. L. Kubena, J. W. Ward, F. P. Stratton, R. J. Joyce, and G. M. Atkinson, J. Vac. Sci. Technol. B 9, 3079 (1991). https://doi.org/10.1116/1.585373

    Article  Google Scholar 

  3. G. M. Mladenov, M. Braun, B. Emmoth, and J. P. Biersack, J. Appl. Phys. 58, 2534 (1985). https://doi.org/10.1063/1.335932

    Article  CAS  Google Scholar 

  4. D. Winston, J. Ferrera, L. Battistella, A. E. Vladar, and K. K. Berggren, Scanning 34, 121 (2012). https://doi.org/10.1002/sca.20290

    Article  CAS  Google Scholar 

  5. J. Melngailis, J. Vac. Sci. Technol. B 5, 469 (1998). https://doi.org/10.1116/1.583937

    Article  Google Scholar 

  6. J. Notte, B. Ward, N. Economou, R. Hill, R. Percival, L. Farkas, and S. McVey, AIP Conf. Proc. 931, 489 (2007). https://doi.org/10.1063/1.2799423

    Article  CAS  Google Scholar 

  7. A. N. Broers, W. W. Molzen, J. J. Cuomo, and N. D. Wittels, Appl. Phys. Lett. 29, 596 (1976). https://doi.org/10.1063/1.89155

    Article  CAS  Google Scholar 

  8. I. Haller, M. Hatzakis, and R. Srinivasan, IBM J. Res. Dev. 12, 251 (1968). https://doi.org/10.1147/RD.123.0251

    Article  Google Scholar 

  9. A. A. Tseng, K. Chen, C. D. Chen, and K. J. Ma, IEEE Trans. Electron. Packag. Manuf 26, 144 (2003). https://doi.org/10.1109/TEPM.2003.817714

    Article  CAS  Google Scholar 

  10. T. P. H. Chang, J. Vac. Sci. Technol. 12, 1271 (1975). https://doi.org/10.1116/1.568515

    Article  Google Scholar 

  11. G. Owen and P. Rissman, J. Appl. Phys. 54, 3537 (1983). https://doi.org/10.1063/1.332426

    Article  Google Scholar 

  12. V. Sidorkin, E. van Veldhoven, E. van der Drift, P. Alkemade, H. Salemink, and D. Maas, J. Vac. Sci. Technol. B 27, L18 (2009). https://doi.org/10.1116/1.3182742

    Article  CAS  Google Scholar 

  13. D. Winston, V. R. Manfrinato, S. M. Nicaise, L. L. Cheong, H. Duan, D. Ferranti, J. Marshman, S. McVey, L. Stern, J. Notte, and K. K. Berggren, Nano Lett. 11, 4343 (2011). https://doi.org/10.1021/nl202447n

    Article  CAS  Google Scholar 

  14. E. van Veldhoven, V. Sidorkin, P. Chen, P. Alkemade, E. van der Drift, H. Salemink, H. Zandbergen, and D. Maas, Microsc. Microanal. 16 (S2), 202 (2010). https://doi.org/10.1017/s1431927610063270

    Article  CAS  Google Scholar 

  15. G. M. Mladenov, K. J. Vutova, and E. G. Koleva, Phys. Chem. Solid State 10, 707 (2009).

    CAS  Google Scholar 

  16. J. Cai, Z. Zhu, P. F. A. Alkemade, E. van Veldhoven, Q. Wang, H. Ge, S. P. Rodrigues, W. Cai, and W. D. Li, Adv. Mater. Interfaces 5, 1800203 (2018). https://doi.org/10.1002/admi.201800203

    Article  CAS  Google Scholar 

  17. N. Kalhor, W. Mulckhuyse, P. Alkemade, and D. Maas, Proc. SPIE 9425, 942513 (2015). https://doi.org/10.1117/12.2085791

    Article  Google Scholar 

  18. Ya. L. Shabelnikova and S. I. Zaitsev, in Proc. 26th Int. Symp. Phys. Technology (Minsk, 2018), p. 161.

  19. M. I. Ryazanov and I. O. Tilinin, Surface Investigation by Particle Backscattering (Energoatomizdat, Moscow, 1985) [in Russian].

    Google Scholar 

  20. Ya. L. Shabelnikova and S. I. Zaitsev, Nanoindustriya, No. S96-2, 753 (2020). https://doi.org/10.22184/1993-8578.2020.13.3s.753.755

  21. Y. J. Lindhard, M. Scharff, H. E. Schiot, and T. Kobenhavn, K. Dan. Vidensk. Selsk. Mat. Fys. Medd. 33 (14), 44 (1963).

    Google Scholar 

  22. H. Gnaser, Low-Energy Ion Irradiation of Solid Surfaces (Springer, Berlin, 1999).

    Google Scholar 

  23. Yu. V. Gott and Yu. N. Yavlinskii, Interaction of Slow Particles with Matter and Plasma Diagnostics (Atomizdat, Moscow, 1973) [in Russian].

    Google Scholar 

  24. L. D. Landau and E. M. Lifshits, Mechanics, 4th ed. (Nauka, Moscow, 1988) [in Russian].

    Google Scholar 

  25. P. Sigmund, Rev. Roum. Phys. 17, 1079 (1972).

    CAS  Google Scholar 

  26. J. Lindhard, V. Nielsen, and M. Scharff, K. Dan. Vidensk. Selsk. Mat. Fys. Medd. 36, 10 (1968).

    Google Scholar 

  27. A. M. Borisov and E. S. Mashkova, Physical Foundations of Ion-Beam Technologies, part I: Ion–Electron Emission (Universitetskaya Kniga, Moscow, 2011).

  28. O. B. Firsov, Zh. Eksp. Teor. Fiz. 33, 696 (1957).

    CAS  Google Scholar 

  29. W. D. Wilson, L. G. Haggmark, and J. P. Biersack, Phys. Rev. B 15, 2458 (1977).

    Article  CAS  Google Scholar 

  30. J. Ziegler, SRIM—The Stopping and Range of Ions in Matter. http://www.srim.org/.

Download references

Funding

The work was supported by the Ministry of Science and Education of the Russian Federation (State task no. 075-00355-21-00).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ya. L. Shabelnikova.

Ethics declarations

We declare that we have no conflicts of interest.

Additional information

Translated by G. Dedkov

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shabelnikova, Y.L., Zaitsev, S.I. Energy and Transport Lengths for Describing Volume of Resist Modification in Ion-Beam Lithography. J. Surf. Investig. 16, 605–610 (2022). https://doi.org/10.1134/S1027451022040310

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1027451022040310

Keywords:

Navigation