Skip to main content
Log in

Sustainable functionalization and modification of materials via multicomponent reactions in water

  • Review Article
  • Published:
Frontiers of Chemical Science and Engineering Aims and scope Submit manuscript

Abstract

In materials chemistry, green chemistry has established firm ground providing essential design criteria to develop advanced tools for efficient functionalization and modification of materials. Particularly, the combination of multicomponent reactions in water and aqueous media with materials chemistry unlocks a new sustainable way for constructing multi-functionalized structures with unique features, playing significant roles in the plethora of applications. Multicomponent reactions have received significant consideration from the community of material chemistry because of their great efficiency, simple operations, intrinsic molecular diversity, and an atom and a pot economy. Also, by rational design of multicomponent reactions in water and aqueous media, the performance of some multicomponent reactions could be enhanced by the contributing “natural” form of water-soluble materials, the exclusive solvating features of water, and simple separating and recovering materials. To date, there is no exclusive review to report the sustainable functionalization and modification of materials in water. This critical review highlights the utility of various kinds of multicomponent reactions in water and aqueous media as green methods for functionalization and modification of siliceous, magnetic, and carbonaceous materials, oligosaccharides, polysaccharides, peptides, proteins, and synthetic polymers. The detailed discussion of synthetic procedures, properties, and related applicability of each functionalized/modified material is fully deliberated in this review.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ostreng W. Science without Boundaries: Interdisciplinarity in Research, Society and Politics. Lanham, MD: University Press of America, 2009

    Google Scholar 

  2. Sperling R A, Parak W J. Surface modification, functionalization and bioconjugation of colloidal inorganic nanoparticles. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 1915, 2010(368): 1333–1383

    Google Scholar 

  3. Makvandi P, Iftekhar S, Pizzetti F, Zarepour A, Zare E N, Ashrafizadeh M, Agarwal T, Padil V V T, Mohammadinejad R, Sillanpaa M. Functionalization of polymers and nanomaterials for water treatment, food packaging, textile and biomedical applications: a review. Environmental Chemistry Letters, 2021, 19: 583–611

    Article  CAS  Google Scholar 

  4. Feng Y, Zhao H, Zhang L, Guo J. Surface modification of biomaterials by photochemical immobilization and photograft polymerization to improve hemocompatibility. Frontiers of Chemical Engineering in China, 2010, 4(3): 372–381

    Article  CAS  Google Scholar 

  5. Knoll W. Nanomaterials, Polymers and Devices: Materials Functionalization and Device Fabrication. New York: John Wiley & Sons, 2015

    Google Scholar 

  6. Li Y, Shi J. Hollow-structured mesoporous materials: chemical synthesis, functionalization and applications. Advanced Materials, 2014, 26(20): 3176–3205

    Article  CAS  PubMed  Google Scholar 

  7. Kango S, Kalia S, Celli A, Njuguna J, Habibi Y, Kumar R. Surface modification of inorganic nanoparticles for development of organic-inorganic nanocomposites—a review. Progress in Polymer Science, 2013, 38(8): 1232–1261

    Article  CAS  Google Scholar 

  8. Cohen S M. Postsynthetic methods for the functionalization of metal-organic frameworks. Chemical Reviews, 2011, 112(2): 970–1000

    Article  PubMed  Google Scholar 

  9. Javanbakht S, Shaabani A. Multicomponent reactions-based modified/functionalized materials in the biomedical platforms. ACS Applied Bio Materials, 2019, 3(1): 156–174

    Article  PubMed  Google Scholar 

  10. Afshari R, Shaabani A. Materials functionalization with multicomponent reactions: state of the art. ACS Combinatorial Science, 2018, 20(9): 499–528

    Article  CAS  PubMed  Google Scholar 

  11. Farhid H, Khodkari V, Nazeri M T, Javanbakht S, Shaabani A. Multicomponent reactions as a potent tool for the synthesis of benzodiazepines. Organic & Biomolecular Chemistry, 2021, 19(15): 3318–3358

    Article  CAS  Google Scholar 

  12. Shaabani A, Mohammadian R, Afshari R, Hooshmand S E, Nazeri M T, Javanbakht S. The status of isocyanide-based multi-component reactions in Iran (2010–2018). Molecular Diversity, 2021, 25: 1145–1210

    Article  CAS  PubMed  Google Scholar 

  13. Tundo P, Anastas P, Black D S, Breen J, Collins T, Memoli S, Miyamoto J, Polyakoff M, Tumas W. Synthetic pathways and processes in green chemistry. Introductory overview. Pure and Applied Chemistry, 2000, 72(7): 1207–1228

    Article  CAS  Google Scholar 

  14. Alfonsi K, Colberg J, Dunn P J, Fevig T, Jennings S, Johnson T A, Kleine H P, Knight C, Nagy M A, Perry D A, Stefaniak M. Green chemistry tools to influence a medicinal chemistry and research chemistry based organisation. Green Chemistry, 2008, 10(1): 31–36

    Article  CAS  Google Scholar 

  15. Constable D J, Curzons A D, Cunningham V L. Metrics to “green” chemistry—which are the best? Green Chemistry, 2002, 4(6): 521–527

    Article  CAS  Google Scholar 

  16. Curzons A D, Constable D J, Mortimer D N, Cunningham V L. So you think your process is green, how do you know? —using principles of sustainability to determine what is green—a corporate perspective. Green Chemistry, 2001, 3(1): 1–6

    Article  CAS  Google Scholar 

  17. Gu Y. Multicomponent reactions in unconventional solvents: state of the art. Green Chemistry, 2012, 14(8): 2091–2128

    Article  CAS  Google Scholar 

  18. Reinhardt D, Ilgen F, Kralisch D, König B, Kreisel G. Evaluating the greenness of alternative reaction media. Green Chemistry, 2008, 10(11): 1170–1181

    Article  CAS  Google Scholar 

  19. Varma R S. Solvent-free accelerated organic syntheses using microwaves. Pure and Applied Chemistry, 2001, 73(1): 193–198

    Article  CAS  Google Scholar 

  20. Walsh P J, Li H, de Parrodi C A. A green chemistry approach to asymmetric catalysis: solvent-free and highly concentrated reactions. Chemical Reviews, 2007, 107(6): 2503–2545

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Kumaravel K, Vasuki G. Multi-component reactions in water. Current Organic Chemistry, 2009, 13(18): 1820–1841

    Article  CAS  Google Scholar 

  22. Simon M O, Li C J. Green chemistry oriented organic synthesis in water. Chemical Society Reviews, 2012, 41(4): 1415–1427

    Article  CAS  PubMed  Google Scholar 

  23. Cioc R C, Ruijter E, Orru R V. Multicomponent reactions: advanced tools for sustainable organic synthesis. Green Chemistry, 2014, 16(6): 2958–2975

    Article  CAS  Google Scholar 

  24. Kakuchi R. Multicomponent reactions in polymer synthesis. Angewandte Chemie International Edition, 2014, 53(1): 46–48

    Article  CAS  PubMed  Google Scholar 

  25. Rudick J G. Innovative macromolecular syntheses via isocyanide multicomponent reactions. Journal of Polymer Science, Part A: Polymer Chemistry, 2013, 51(19): 3985–3991

    Article  CAS  Google Scholar 

  26. Kakuchi R. Metal-catalyzed multicomponent reactions for the synthesis of polymers. In: Multi-Component and Sequential Reactions in Polymer Synthesis. Berlin: Springer, 2014

    Google Scholar 

  27. Yang B, Zhao Y, Wei Y, Fu C, Tao L. The Ugi reaction in polymer chemistry: syntheses, applications and perspectives. Polymer Chemistry, 2015, 6(48): 8233–8239

    Article  CAS  Google Scholar 

  28. Llevot A, Boukis A C, Oelmann S, Wetzel K, Meier M A. An update on isocyanide-based multicomponent reactions in polymer science. In: Tang B Z, Hu R, eds. Polymer Synthesis Based on Triple-Bond Building Blocks. Berlin: Springer, 2017

    Google Scholar 

  29. Long Z, Mao L, Liu M, Wan Q, Wan Y, Zhang X, Wei Y. Marrying multicomponent reactions and aggregation-induced emission (AIE): new directions for fluorescent nanoprobes. Polymer Chemistry, 2017, 8(37): 5644–5654

    Article  CAS  Google Scholar 

  30. Reguera L, Méndez Y, Humpierre A R, Valdés O, Rivera D G. Multicomponent reactions in ligation and bioconjugation chemistry. Accounts of Chemical Research, 2018, 51(6): 1475–1486

    Article  CAS  PubMed  Google Scholar 

  31. Orru R V, de Greef M. Recent advances in solution-phase multicomponent methodology for the synthesis of heterocyclic compounds. Synthesis, 2003, 2003(10): 1471–1499

    Article  Google Scholar 

  32. Shaabani A, Maleki A, Rezayan A H, Sarvary A. Recent progress of isocyanide-based multicomponent reactions in Iran. Molecular Diversity, 2011, 15(1): 41–68

    Article  CAS  PubMed  Google Scholar 

  33. Dömling A, Achatz S, Beck B. Novel anti-tuberculosis agents from MCR libraries. Bioorganic & Medicinal Chemistry Letters, 2007, 17(19): 5483–5486

    Article  Google Scholar 

  34. Sheldon R A. Fundamentals of green chemistry: efficiency in reaction design. Chemical Society Reviews, 2012, 41(4): 1437–1451

    Article  CAS  PubMed  Google Scholar 

  35. Akritopoulou-Zanze I. Isocyanide-based multicomponent reactions in drug discovery. Current Opinion in Chemical Biology, 2008, 12(3): 324–331

    Article  CAS  PubMed  Google Scholar 

  36. Hulme C, Dietrich J. Emerging molecular diversity from the intra-molecular Ugi reaction: iterative efficiency in medicinal chemistry. Molecular Diversity, 2009, 13(2): 195–207

    Article  CAS  PubMed  Google Scholar 

  37. Tietze L F, Modi A. Multicomponent domino reactions for the synthesis of biologically active natural products and drugs. Medicinal Research Reviews, 2000, 20(4): 304–322

    Article  CAS  PubMed  Google Scholar 

  38. Ridder B, Mattes D, Nesterov-Mueller A, Breitling F, Meier M. Peptide array functionalization via the Ugi four-component reaction. Chemical Communications, 2017, 53(40): 5553–5556

    Article  CAS  PubMed  Google Scholar 

  39. Theato P. Multi-Component and Sequential Reactions in Polymer Synthesis. Berlin: Springer, 2015

    Book  Google Scholar 

  40. Sehlinger A, Meier M A R. Passerini and Ugi multicomponent reactions in polymer science. In: Theato P, ed. Multi-Component and Sequential Reactions in Polymer Synthesis. Berlin: Springer, 2014

    Google Scholar 

  41. Dömling A. Recent developments in isocyanide based multicomponent reactions in applied chemistry. Chemical Reviews, 2006, 106(1): 17–89

    Article  PubMed  Google Scholar 

  42. Müller T J J. Multicomponent reactions. Beilstein Journal of Organic Chemistry, 2011, 7: 960–961

    Article  PubMed  PubMed Central  Google Scholar 

  43. Paprocki D, Madej A, Koszelewski D, Brodzka A, Ostaszewski R. Multicomponent reactions accelerated by aqueous micelles. Frontiers in Chemistry, 2018, 6: 502

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Shaabani A, Hooshmand S E. Isocyanide and Meldrum’s acid-based multicomponent reactions in diversity-oriented synthesis: from a serendipitous discovery towards valuable synthetic approaches. RSC Advances, 2016, 6(63): 58142–58159

    Article  CAS  Google Scholar 

  45. Wessjohann L A, Kreye O, Rivera D G. One-pot assembly of amino acid bridged hybrid macromulticyclic cages through multiple multicomponent macrocyclizations. Angewandte Chemie International Edition, 2017, 56(13): 3501–3505

    Article  CAS  PubMed  Google Scholar 

  46. Shaabani A, Hooshmand S E. Diversity-oriented catalyst-free synthesis of pseudopeptides containing rhodanine scaffolds via a one-pot sequential isocyanide-based six-component reactions in water using ultrasound irradiation. Ultrasonics Sonochemistry, 2018, 40: 84–90

    Article  CAS  PubMed  Google Scholar 

  47. Toure B B, Hall D G. Natural product synthesis using multicomponent reaction strategies. Chemical Reviews, 2009, 109(9): 4439–4486

    Article  CAS  PubMed  Google Scholar 

  48. Strecker A. About a new body arising from aldehyde-ammonia and hydrocyanic acid. Justus Liebigs Annalen der Chemie, 1854, 91(3): 349–351 (in German)

    Article  Google Scholar 

  49. Gröger H. Catalytic enantioselective Strecker reactions and analogous syntheses. Chemical Reviews, 2003, 103(8): 2795–2828

    Article  PubMed  Google Scholar 

  50. de Fátima Â, Braga T C, Neto L S, Terra B S, Oliveira B G F, da Silva D L, Modolo L V. A mini-review on Biginelli adducts with notable pharmacological properties. Journal of Advanced Research, 2015, 6(3): 363–373

    Article  PubMed  Google Scholar 

  51. Biginelli P. On aldehyde amide of acetoacetic ether. Berichte der Deutschen Chemischen Gesellschaft, 1891, 24(1): 1317–1319 (in German)

    Article  Google Scholar 

  52. List B. The direct catalytic asymmetric three-component Mannich reaction. Journal of the American Chemical Society, 2000, 122(38): 9336–9337

    Article  CAS  Google Scholar 

  53. Arrayás R G, Carretero J C. Catalytic asymmetric direct Mannich reaction: a powerful tool for the synthesis of α, β-diamino acids. Chemical Society Reviews, 2009, 38(7): 1940–1948

    Article  PubMed  Google Scholar 

  54. Noble A, Anderson J C. Nitro-Mannich reaction. Chemical Reviews, 2013, 113(5): 2887–2939

    Article  CAS  PubMed  Google Scholar 

  55. Passerini M, Simone L. Above isonitriles (I). Compound of p-isonitrile-azobenzene with acetone and acetic acid. Gazzetta Chimica Italiana, 1921, 51: 126–129 (in Italian)

    CAS  Google Scholar 

  56. Kreye O, Tóth T, Meier M A. Introducing multicomponent reactions to polymer science: Passerini reactions of renewable monomers. Journal of the American Chemical Society, 2011, 133(6): 1790–1792

    Article  CAS  PubMed  Google Scholar 

  57. Ugi I, Meyr R, Fetzer U, Steinbrückner C. Experiments with isonitriles. Angewandte Chemie International Edition, 1959, 71: 386

    Google Scholar 

  58. Dömling A, Ugi I. Multicomponent reactions with isocyanides. Journal of the American Chemical Society, 2000, 39(18): 3168–3210

    Google Scholar 

  59. Nenajdenko V. Isocyanide Chemistry: Applications in Synthesis and Material Science. New York: John Wiley & Sons, 2012

    Book  Google Scholar 

  60. Keglevich G, Bálint E. The Kabachnik-Fields reaction: mechanism and synthetic use. Molecules, 2012, 17(11): 12821–12835

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Cheng X, Goddard R, Buth G, List B. Direct catalytic asymmetric three-component Kabachnik-Fields reaction. Journal of the American Chemical Society, 2008, 47(27): 5079–5081

    CAS  Google Scholar 

  62. Loev B, Snader K M. The Hantzsch reaction. I. Oxidative dealkylation of certain dihydropyridines. Journal of Organic Chemistry, 1965, 30(6): 1914–1916

    Article  CAS  Google Scholar 

  63. Hantzsch A. Condensation products of aldehyde-ammonia and ketone-like compounds. Berichte der Deutschen Chemischen Gesellschaft, 1881, 14(2): 1637–1638 (in German)

    Article  Google Scholar 

  64. Zhu J. Recent developments in the isonitrile-based multicomponent synthesis of heterocycles. European Journal of Organic Chemistry, 2003, 2003(7): 1133–1144

    Article  Google Scholar 

  65. Keating T A, Armstrong R W. Postcondensation modifications of Ugi four-component condensation products: 1-isocyanocyclohexene as a convertible isocyanide. Mechanism of conversion, synthesis of diverse structures, and demonstration of resin capture. Journal of the American Chemical Society, 1996, 118(11): 2574–2583

    Article  CAS  Google Scholar 

  66. Marcaccini S, Torroba T. Multicomponent Reactions. New York: John Wiley & Sons, 2005

    Google Scholar 

  67. Kitanosono T, Kobayashi S. Reactions in water through “on-water” mechanism. Chemistry, 2020, 26(43): 9408–9429

    Article  CAS  PubMed  Google Scholar 

  68. Zhou F, Li C J. En route to metal-mediated and metal-catalysed reactions in water. Chemical Science, 2019, 10(1): 34–46

    Article  CAS  PubMed  Google Scholar 

  69. Butler R N, Coyne A G. Organic synthesis reactions on-water at the organic-liquid water interface. Organic & Biomolecular Chemistry, 2016, 14(42): 9945–9960

    Article  CAS  Google Scholar 

  70. Butler R N, Coyne A G. Understanding “on-water” catalysis of organic reactions. Effects of H+ and Li+ ions in the aqueous phase and nonreacting competitor h-bond acceptors in the organic phase: on H2O versus on D2O for huisgen cycloadditions. Journal of Organic Chemistry, 2015, 80(3): 1809–1817

    Article  CAS  PubMed  Google Scholar 

  71. Butler R N, Coyne A G. Water: nature’s reaction enforcer comparative effects for organic synthesis “in-water” and “on-water”. Chemical Reviews, 2010, 110(10): 6302–6337

    Article  CAS  PubMed  Google Scholar 

  72. Chanda A, Fokin V V. Organic synthesis “on water”. Chemical Reviews, 2009, 109(2): 725–748

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Li C J, Chen L. Organic chemistry in water. Chemical Society Reviews, 2006, 35(1): 68–82

    Article  PubMed  Google Scholar 

  74. Manabe K, Kobayashi S. Catalytic asymmetric carbon-carbon bond-forming reactions in aqueous media. Chemistry, 2002, 8(18): 4094–4101

    Article  CAS  PubMed  Google Scholar 

  75. Li C J, Chan T H. Comprehensive Organic Reactions in Aqueous Media. 2nd ed. New York: John Wiley & Sons, 2007

    Book  Google Scholar 

  76. Li C J, Chan T H. Organic Reactions in Aqueous Media. 2nd ed. New York: Wiley, 1997

    Google Scholar 

  77. Breslow R. The principles of and reasons for using water as a solvent for green chemistry. In: Handbook of Green Chemistry: Online. New York: Wiley, 2010

    Google Scholar 

  78. Cicco L, Dilauro G, Perna F M, Vitale P, Capriati V. Advances in deep eutectic solvents and water: applications in metal and biocatalyzed processes, in the synthesis of APIs, and other biologically active compounds. Organic & Biomolecular Chemistry, 2021, 19(12): 2558–2577

    Article  CAS  Google Scholar 

  79. Pirrung M C, Sarma K D. Multicomponent reactions are accelerated in water. Journal of the American Chemical Society, 2004, 126(2): 444–445

    Article  CAS  PubMed  Google Scholar 

  80. Lubineau A. Water-promoted organic reactions: aldol reaction under neutral conditions. Journal of Organic Chemistry, 1986, 51(11): 2142–2144

    Article  CAS  Google Scholar 

  81. Lubineau A, Augé J, Queneau Y. Water-promoted organic reactions. Synthesis, 1994, 1994(8): 741–760

    Article  Google Scholar 

  82. Hayashi Y. Pot economy and one-pot synthesis. Chemical Science, 2016, 7(2): 866–880

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Anastas P, Eghbali N. Green chemistry: principles and practice. Chemical Society Reviews, 2010, 39(1): 301–312

    Article  CAS  PubMed  Google Scholar 

  84. Clarke P A, Santos S, Martin W H. Combining pot, atom and step economy (PASE) in organic synthesis. Synthesis of tetrahydropyran-4-ones. Green Chemistry, 2007, 9(5): 438–440

    Article  CAS  Google Scholar 

  85. Vretblad P, Axen R, Mjöberg J, Gronowitz S, Koskikallio J, Swahn C G. The use of isocyanides for the immobilization of biological molecules. Acta Chemica Scandinavica, 1973, 27(8): 2769–2780 (in Italian)

    Article  CAS  PubMed  Google Scholar 

  86. Axen R, Vretblad P, Porath J, Pilotti Å, Lindberg A A, Ehrenberg L. The use of isocyanides for the attachment of biologically active substances to polymers. Acta Chemica Scandinavica, 1971, 25: 1129–1132 (in Italian)

    Article  CAS  Google Scholar 

  87. Goldstein L. Polymeric supports bearing isonitrile functional groups for covalent fixation of biologically active molecules (a review). Journal of Chromatography A, 1981, 215: 31–43

    Article  CAS  Google Scholar 

  88. Rezaei A, Akhavan O, Hashemi E, Shamsara M. Ugi four-component assembly process: an efficient approach for one-pot multifunctionalization of nanographene oxide in water and its application in lipase immobilization. Chemistry of Materials, 2016, 28(9): 3004–3016

    Article  CAS  Google Scholar 

  89. Mohammadi M, Ashjari M, Garmroodi M, Yousefi M, Karkhane A A. The use of isocyanide-based multicomponent reaction for covalent immobilization of Rhizomucor miehei lipase on multiwall carbon nanotubes and graphene nanosheets. RSC Advances, 2016, 6(76): 72275–72285

    Article  CAS  Google Scholar 

  90. Rezaei A, Akhavan O, Hashemi E, Shamsara M. Toward chemical perfection of graphene-based gene carrier via Ugi multicomponent assembly process. Biomacromolecules, 2016, 17(9): 2963–2971

    Article  CAS  PubMed  Google Scholar 

  91. Adibi-Motlagh B, Lotfi A S, Rezaei A, Hashemi E. Cell attachment evaluation of the immobilized bioactive peptide on a nanographene oxide composite. Materials Science and Engineering C, 2018, 82: 323–329

    Article  CAS  PubMed  Google Scholar 

  92. Kung K K Y, Li G L, Zou L, Chong H C, Leung Y C, Wong K H, Lo V K Y, Che C M, Wong M K. Gold-mediated bifunctional modification of oligosaccharides via a three-component coupling reaction. Organic & Biomolecular Chemistry, 2012, 10(5): 925–930

    Article  CAS  Google Scholar 

  93. Abbiati G, Rossi E. Silver and gold-catalyzed multicomponent reactions. Beilstein Journal of Organic Chemistry, 2014, 10(1): 481–513

    Article  PubMed  PubMed Central  Google Scholar 

  94. de Nooy A E, Capitani D, Masci G, Crescenzi V. Ionic polysaccharide hydrogels via the Passerini and Ugi multicomponent condensations: synthesis, behavior and solidstate NMR characterization. Biomacromolecules, 2000, 1(2): 259–267

    Article  CAS  PubMed  Google Scholar 

  95. de Nooy A E, Rori V, Masci G, Dentini M, Crescenzi V. Synthesis and preliminary characterisation of charged derivatives and hydrogels from scleroglucan. Carbohydrate Research, 2000, 324(2): 116–126

    Article  CAS  PubMed  Google Scholar 

  96. de Nooy A J, Masci G, Crescenzi V. Versatile synthesis of polysaccharide hydrogels using the Passerini and Ugi multicomponent condensations. Macromolecules, 1999, 32(4): 1318–1320

    Article  CAS  Google Scholar 

  97. Gabriel L, Heinze T. Diversity of polysaccharide structures designed by aqueous Ugi-multi-compound reaction. Cellulose, 2018, 25(5): 2849–2859

    Article  CAS  Google Scholar 

  98. Shulepov I D, Kozhikhova K V, Panfilova Y S, Ivantsova M N, Mironov M A. One-pot synthesis of cross-linked sub-micron microgels from pure cellulose via the Ugi reaction and their application as emulsifiers. Cellulose, 2016, 23(4): 2549–2559

    Article  CAS  Google Scholar 

  99. Pettignano A, Daunay A, Moreau C, Cathala B, Charlot A, Fleury E. Sustainable modification of carboxymethyl cellulose by passerini three-component reaction and subsequent adsorption onto cellulosic substrates. ACS Sustainable Chemistry & Engineering, 2019, 7(17): 14685–14696

    Article  CAS  Google Scholar 

  100. García A, Hernández K, Chico B, García D, Villalonga M L, Villalonga R. Preparation of thermostable trypsinpolysaccharide neoglycoenzymes through Ugi multicomponent reaction. Journal of Molecular Catalysis B: Enzymatic, 2009, 59(1–3): 126–130

    Article  Google Scholar 

  101. Khine Y Y, Ganda S, Stenzel M H. Covalent tethering of temperature responsive pNIPAm onto TEMPO-oxidized cellulose nanofibrils via three-component Passerini reaction. ACS Macro Letters, 2018, 7(4): 412–418

    Article  CAS  PubMed  Google Scholar 

  102. Esen E, Meier M A. Sustainable functionalization of 2,3-dialdehyde cellulose via the Passerini three-component reaction. ACS Sustainable Chemistry & Engineering, 2020, 8(41): 15755–15760

    Article  CAS  Google Scholar 

  103. Wang R, Sun S, Wang B, Mao Z, Xu H, Feng X, Sui X. Robust fabrication of fluorescent cellulosic materials via Hantzsch reaction. Macromolecular Rapid Communications, 2021, 42(6): 2000496

    Article  CAS  Google Scholar 

  104. König S, Ugi I. Enzymen/crosslinking of aqueous alginic acid by four component condensation with inclusion immobilization of enzymes. Zeitschrift für Naturforschung B, 1991, 46(9): 1261–1266 (in Italian)

    Article  Google Scholar 

  105. Bu H, Kjøniksen A L, Knudsen K D, Nyström B. Rheological and structural properties of aqueous alginate during gelation via the Ugi multicomponent condensation reaction. Biomacromolecules, 2004, 5(4): 1470–1479

    Article  CAS  PubMed  Google Scholar 

  106. Bu H, Kjøniksen A L, Knudsen K D, Nyström B. Effects of surfactant and temperature on rheological and structural properties of semidilute aqueous solutions of unmodified and hydrophobically modified alginate. Langmuir, 2005, 21(24): 10923–10930

    Article  CAS  PubMed  Google Scholar 

  107. Bu H, Kjøniksen A L, Nyström B. Effects of pH on dynamics and rheology during association and gelation via the Ugi reaction of aqueous alginate. European Polymer Journal, 2005, 41(8): 1708–1717

    Article  CAS  Google Scholar 

  108. Bu H, Kjøniksen A L, Elgsaeter A, Nyström B. Interaction of unmodified and hydrophobically modified alginate with sodium dodecyl sulfate in dilute aqueous solution: calorimetric, rheological, and turbidity studies. Physicochemical and Engineering Aspects, 2006, 278(1–3): 166–174

    Article  CAS  Google Scholar 

  109. Yan H, Chen X, Li J, Feng Y, Shi Z, Wang X, Lin Q. Synthesis of alginate derivative via the Ugi reaction and its characterization. Carbohydrate Polymers, 2016, 136: 757–763

    Article  CAS  PubMed  Google Scholar 

  110. Camacho C, Matías J C, García D, Simpson B K, Villalonga R. Amperometric enzyme biosensor for hydrogen peroxide via Ugi multicomponent reaction. Electrochemistry Communications, 2007, 9(7): 1655–1660

    Article  CAS  Google Scholar 

  111. Werner B, Bu H, Kjøniksen A L, Sande S A, Nyström B. Characterization of gelation of aqueous pectin via the Ugi multicomponent condensation reaction. Polymer Bulletin, 2006, 56(6): 579–589

    Article  CAS  Google Scholar 

  112. Mironov M A, Shulepov I D, Ponomarev V S, Bakulev V A. Synthesis of polyampholyte microgels from colloidal salts of pectinic acid and their application as pH-responsive emulsifiers. Colloid & Polymer Science, 2013, 291(7): 1683–1691

    Article  CAS  Google Scholar 

  113. Crescenzi V, Francescangeli A, Segre A L, Capitani D, Mannina L, Renier D, Bellini D. NMR structural study of hydrogels based on partially deacetylated hyaluronan. Macromolecular Bioscience, 2002, 2(6): 272–279

    Article  CAS  Google Scholar 

  114. Crescenzi V, Francescangeli A, Capitani D, Mannina L, Renier D, Bellini D. Hyaluronan networking via Ugi’s condensation using lysine as cross-linker diamine. Carbohydrate Polymers, 2003, 53(3): 311–316

    Article  CAS  Google Scholar 

  115. Khan A, Badshah S, Airoldi C. Dithiocarbamated chitosan as a potent biopolymer for toxic cation remediation. Colloids and Surfaces B: Biointerfaces, 2011, 87(1): 88–95

    Article  CAS  PubMed  Google Scholar 

  116. Wan Q, Liu M, Xu D, Huang H, Mao L, Zeng G, Deng F, Zhang X, Wei Y. Facile fabrication of amphiphilic AIE active glucan via formation of dynamic bonds: self assembly, stimuli responsiveness and biological imaging. Journal of Materials Chemistry, 2016, 4(22): 4033–4039

    CAS  PubMed  Google Scholar 

  117. Méndez Y, Chang J, Humpierre A R, Zanuy A, Garrido R, Vasco A V, Pedroso J, Santana D, Rodríguez L M, García-Rivera D, Valdés Y, Vérez-Bencomo V, Rivera D G. Multicomponent polysaccharide-protein bioconjugation in the development of antibacterial glycoconjugate vaccine candidates. Chemical Science, 2018, 9(9): 2581–2588

    Article  PubMed  PubMed Central  Google Scholar 

  118. Uhlig N, Li C J. Site-specific modification of amino acids and peptides by aldehyde-alkyne-amine coupling under ambient aqueous conditions. Organic Letters, 2012, 14(12): 3000–3003

    Article  CAS  PubMed  Google Scholar 

  119. Zhang J, Mulumba M, Ong H, Lubell W D. Diversity-oriented synthesis of cyclic azapeptides by A3-macrocyclization provides high-affinity CD36-modulating peptidomimetics. Angewandte Chemie International Edition, 2017, 56(22): 6284–6288

    Article  CAS  PubMed  Google Scholar 

  120. Ohm R G, Mulumba M, Chingle R M, Ahsanullah, Zhang J, Chemtob S, Ong H, Lubell W D. Diversity-oriented A3-macrocyclization for studying influences of ring-size and shape of cyclic peptides: CD36 receptor modulators. Journal of Medicinal Chemistry, 2021, 64(13): 9365–9380

    Article  CAS  PubMed  Google Scholar 

  121. Joshi N S, Whitaker L R, Francis M B. A three-component Mannich-type reaction for selective tyrosine bioconjugation. Journal of the American Chemical Society, 2004, 126(49): 15942–15943

    Article  CAS  PubMed  Google Scholar 

  122. Chilamari M, Purushottam L, Rai V. Site-selective labeling of native proteins by a multicomponent approach. Chemistry, 2017, 23(16): 3819–3823

    Article  CAS  PubMed  Google Scholar 

  123. Nazeri M T, Javanbakht S, Shaabani A, Ghorbani M. 5-Aminopyrazole-conjugated gelatin hydrogel: a controlled 5-fluorouracil delivery system for rectal administration. Journal of Drug Delivery Science and Technology, 2020, 57: 101669

    Article  CAS  Google Scholar 

  124. Zha Z, Li J, Ge Z. Endosomal-escape polymers based on multicomponent reaction-synthesized monomers integrating alkyl and imidazolyl moieties for efficient gene delivery. ACS Macro Letters, 2015, 4(10): 1123–1127

    Article  CAS  PubMed  Google Scholar 

  125. Marek M, Jarý J, Valentova O, Vodrážka Z. Immobilization of glycoenzymes by means of their glycosidic components. Biotechnology Letters, 1983, 5(10): 653–658

    Article  CAS  Google Scholar 

  126. Ziegler T, Gerling S, Lang M. Preparation of bioconjugates through an Ugi reaction. Angewandte Chemie International Edition, 2000, 39(12): 2109–2112

    Article  CAS  PubMed  Google Scholar 

  127. Blassberger D, Freeman A, Goldstein L. Chemically modified polyesters as supports for enzyme immobilization: isocyanide, acylhydrazide, and aminoaryl derivatives of poly(ethylene terephthalate). Biotechnology and Bioengineering, 1978, 20(2): 309–316

    Article  CAS  Google Scholar 

  128. Jia Z, Bobrin V A, Truong N P, Gillard M, Monteiro M J. Multifunctional nanoworms and nanorods through a one-step aqueous dispersion polymerization. Journal of the American Chemical Society, 2014, 136(16): 5824–5827

    Article  CAS  PubMed  Google Scholar 

  129. Liu G, Shegiwal A, Zeng Y, Wei Y, Boyer C, Haddleton D, Tao L. Polymers for fluorescence imaging of formaldehyde in living systems via the Hantzsch reaction. ACS Macro Letters, 2018, 7(11): 1346–1352

    Article  CAS  PubMed  Google Scholar 

  130. Yan H, Chen X, Bao C, Wu S, He S, Lin Q. Alginate derivative-functionalized silica nanoparticles: surface modification and characterization. Polymer Bulletin, 2020, 77(1): 73–84

    Article  CAS  Google Scholar 

  131. Mohammadi M, Ashjari M, Dezvarei S, Yousefi M, Babaki M, Mohammadi J. Rapid and high-density covalent immobilization of Rhizomucor miehei lipase using a multi component reaction: application in biodiesel production. RSC Advances, 2015, 5(41): 32698–32705

    Article  CAS  Google Scholar 

  132. Mohammadi M, Habibi Z, Gandomkar S, Yousefi M. A novel approach for bioconjugation of Rhizomucor miehei lipase (RML) onto amine-functionalized supports: application for enantioselective resolution of rac-ibuprofen. International Journal of Biological Macromolecules, 2018, 117: 523–531

    Article  CAS  PubMed  Google Scholar 

  133. Salami F, Habibi Z, Yousefi M, Mohammadi M. Covalent immobilization of laccase by one pot three component reaction and its application in the decolorization of textile dyes. International Journal of Biological Macromolecules, 2018, 120: 144–151

    Article  CAS  PubMed  Google Scholar 

  134. Javanbakht S, Shadi M, Mohammadian R, Shaabani A, Ghorbani M, Rabiee G, Amini M M. Preparation of Fe3O4@SiO2@Tannic acid double core-shell magnetic nanoparticles via the Ugi multicomponent reaction strategy as a pH-responsive co-delivery of doxorubicin and methotrexate. Materials Chemistry and Physics, 2020, 247: 122857

    Article  CAS  Google Scholar 

  135. Ashjari M, Garmroodi M, Asl F A, Emampour M, Yousefi M, Lish M P, Habibi Z, Mohammadi M. Application of multi-component reaction for covalent immobilization of two lipases on aldehyde-functionalized magnetic nanoparticles: production of biodiesel from waste cooking oil. Process Biochemistry, 2020, 90: 156–167

    Article  CAS  Google Scholar 

  136. Perreault F, De Faria A F, Elimelech M. Environmental applications of graphene-based nanomaterials. Chemical Society Reviews, 2015, 44(16): 5861–5896

    Article  CAS  PubMed  Google Scholar 

  137. Leaper S, Abdel-Karim A, Gorgojo P. The use of carbon nanomaterials in membrane distillation membranes: a review. Frontiers of Chemical Science and Engineering, 2021, 15(4): 1–20

    Article  Google Scholar 

  138. Shaabani A, Afshari R. Synthesis of carboxamide-functionalized multiwall carbon nanotubes via Ugi multicomponent reaction: water-dispersible peptidomimetic nanohybrid as controlled drug delivery vehicle. ChemistrySelect, 2017, 2(18): 5218–5225

    Article  CAS  Google Scholar 

  139. Afshari R, Hooshmand S E, Atharnezhad M, Shaabani A. An insight into the novel covalent functionalization of multi-wall carbon nanotubes with pseudopeptide backbones for palladium nanoparticles immobilization: a versatile catalyst towards diverse cross-coupling reactions in bio-based solvents. Polyhedron, 2020, 175: 114238

    Article  Google Scholar 

  140. Faber K. Biotransformations in Organic Chemistry, Vol 4. Berlin: Springer, 1992

    Book  Google Scholar 

  141. Johnson C R. Biotransformations in the synthesis of enantiopure bioactive molecules. Accounts of Chemical Research, 1998, 31(6): 333–341

    Article  CAS  Google Scholar 

  142. Hartmann M, Kostrov X. Immobilization of enzymes on porous silicas—benefits and challenges. Chemical Society Reviews, 2013, 42(15): 6277–6289

    Article  CAS  PubMed  Google Scholar 

  143. Lee C K, Au-Duong A N. Enzyme immobilization on nanoparticles: recent applications. Emerging Areas in Bioengineering, 2018, 1: 67–80

    Article  Google Scholar 

  144. Hermanson G T. Bioconjugate Techniques. Washington: Academic Press, 2013

    Google Scholar 

  145. Boons G, Lee Y, Suzuki A, Taniguchi N, Voragen A. Comprehensive glycoscience from chemistry to systems biology. Biochemistry of Glycoconjugate Glycans Carbohydrate-Mediated Interactions, 2007, 3: 902

    Google Scholar 

  146. Danishefsky S J, Allen J R. From the laboratory to the clinic: a retrospective on fully synthetic carbohydrate-based anticancer vaccines. Angewandte Chemie International Edition, 2000, 39(5): 836–863

    Article  CAS  PubMed  Google Scholar 

  147. van Kasteren S I, Kramer H B, Jensen H H, Campbell S J, Kirkpatrick J, Oldham N J, Anthony D C, Davis B G. Expanding the diversity of chemical protein modification allows post-translational mimicry. Nature, 2007, 446(7139): 1105–1109

    Article  CAS  PubMed  Google Scholar 

  148. Abed A, Deval B, Assoul N, Bataille I, Portes P, Louedec L, Henin D, Letourneur D, Meddahi-Pelle A. A biocompatible polysaccharide hydrogel-embedded polypropylene mesh for enhanced tissue integration in rats. Tissue Engineering Part A, 2008, 14(4): 519–527

    Article  CAS  PubMed  Google Scholar 

  149. Shaabani A, Shadi M, Mohammadian R, Javanbakht S, Nazeri M T, Bahri F. Multi-component reaction-functionalized chitosan complexed with copper nanoparticles: an efficient catalyst toward A3 coupling and click reactions in water. Applied Organometallic Chemistry, 2019, 33(9): e5074

    Google Scholar 

  150. Bahri F, Shadi M, Mohammadian R, Javanbakht S, Shaabani A. Cu-decorated cellulose through a three-component Betti reaction: an efficient catalytic system for the synthesis of 1,3,4-oxadiazoles via imine CH functionalization of N-acylhydrazones. Carbohydrate Polymers, 2021, 265: 118067

    Article  CAS  PubMed  Google Scholar 

  151. Javanbakht S, Nazeri M T, Shaabani A, Ghorbani M. Green one-pot synthesis of multicomponent-crosslinked carboxymethyl cellulose as a safe carrier for the gentamicin oral delivery. International Journal of Biological Macromolecules, 2020, 164: 2873–2880

    Article  CAS  PubMed  Google Scholar 

  152. Javanbakht S, Nabi M, Shaabani A. Graphene quantum dots-crosslinked gelatin via the efficient Ugi four-component reaction: safe photoluminescent implantable carriers for the pH-responsive delivery of doxorubicin. Materialia, 2021, 20: 101233

    Article  CAS  Google Scholar 

  153. Zeeb B, Saberi A H, Weiss J, McClements D J. Retention and release of oil-in-water emulsions from filled hydrogel beads composed of calcium alginate: impact of emulsifier type and pH. Soft Matter, 2015, 11(11): 2228–2236

    Article  CAS  PubMed  Google Scholar 

  154. Korogiannaki M, Zhang J, Sheardown H. Surface modification of model hydrogel contact lenses with hyaluronic acid via thiolene “click” chemistry for enhancing surface characteristics. Journal of Biomaterials Applications, 2017, 32(4): 446–462

    Article  CAS  PubMed  Google Scholar 

  155. Pettignano A, Leguy J, Heux L, Jean B, Charlot A, Fleury E. Multifunctionalization of cellulose microfibrils through a cascade pathway entailing the sustainable Passerini multi-component reaction. Green Chemistry, 2020, 22(20): 7059–7069

    Article  CAS  Google Scholar 

  156. Halimehjani A Z, Mohtasham R, Shockravi A, Martens J. Multicomponent synthesis of dithiocarbamates starting from vinyl sulfones/sulfoxides and their use in polymerization reactions. RSC Advances, 2016, 6(79): 75223–75226

    Article  CAS  Google Scholar 

  157. Halimehjani A Z, Hooshmand S E, Shamiri E V. Synthesis of α-phthalimido-α′-dithiocarbamato propan-2-ols via a one-pot, three-component epoxide ring-opening in water. Tetrahedron Letters, 2014, 55(40): 5454–5457

    Article  CAS  Google Scholar 

  158. De Filippis V, Quarzago D, Vindigni A, Di Cera E, Fontana A. Synthesis and characterization of more potent analogues of hirudin fragment 1–47 containing non-natural amino acids. Biochemistry, 1998, 37(39): 13507–13515

    Article  CAS  PubMed  Google Scholar 

  159. Jungheim L N, Shepherd T A, Baxter A J, Burgess J, Hatch S D, Lubbehusen P, Wiskerchen M, Muesing M A. Potent human immunodeficiency virus type 1 protease inhibitors that utilize noncoded D-amino acids as P2/P3 ligands. Journal of Medicinal Chemistry, 1996, 39(1): 96–108

    Article  CAS  PubMed  Google Scholar 

  160. Nakatani S, Hidaka K, Ami E, Nakahara K, Sato A, Nguyen J T, Hamada Y, Hori Y, Ohnishi N, Nagai A, Kimura T, Hayashi Y, Kiso Y. Combination of non-natural D-amino acid derivatives and allophenylnorstatine-dimethylthioproline scaffold in HIV protease inhibitors have high efficacy in mutant HIV. Journal of Medicinal Chemistry, 2008, 51(10): 2992–3004

    Article  CAS  PubMed  Google Scholar 

  161. Sharma A, Mejía D, Regnaud A, Uhlig N, Li C J, Maysinger D, Kakkar A. Combined A3 coupling and click chemistry approach for the synthesis of dendrimer-based biological tools. ACS Macro Letters, 2014, 3(10): 1079–1083

    Article  CAS  PubMed  Google Scholar 

  162. Huang J L, Gray D G, Li C J. A3-coupling catalyzed by robust Au nanoparticles covalently bonded to HS-functionalized cellulose nanocrystalline films. Beilstein Journal of Organic Chemistry, 2013, 9(1): 1388–1396

    Article  PubMed  PubMed Central  Google Scholar 

  163. Terra J C, Moores A, Moura F C. Amine-functionalized mesoporous silica as a support for on-demand release of copper in the A3-coupling reaction: ultralow concentration catalysis and confinement effect. ACS Sustainable Chemistry & Engineering, 2019, 7(9): 8696–8705

    Article  CAS  Google Scholar 

  164. Ramazani A, Ahankar H, Nafeh Z T, Joo S W. Modern catalysts in A3-coupling reactions. Current Organic Chemistry, 2019, 23(25): 2783–2801

    Article  CAS  Google Scholar 

  165. Yoo W J, Zhao L, Li C J. The A3-coupling (aldehyde-alkyne-amine) reaction: a versatile method for the preparation of propargyl amines. ChemInform, 2012, 43 (5): no

  166. Marsault E, Peterson M L. Macrocycles are great cycles: applications, opportunities, and challenges of synthetic macrocycles in drug discovery. Journal of Medicinal Chemistry, 2011, 54(7): 1961–2004

    Article  CAS  PubMed  Google Scholar 

  167. Craik D J, Fairlie D P, Liras S, Price D. The future of peptide-based drugs. Chemical Biology & Drug Design, 2013, 81(1): 136–147

    Article  CAS  Google Scholar 

  168. Henchey L K, Jochim A L, Arora P S. Contemporary strategies for the stabilization of peptides in the α-helical conformation. Current Opinion in Chemical Biology, 2008, 12(6): 692–697

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  169. de Araujo A D, Hoang H N, Kok W M, Diness F, Gupta P, Hill T A, Driver R W, Price D A, Liras S, Fairlie D P. Comparative α-helicity of cyclic pentapeptides in water. Angewandte Chemie International Edition, 2014, 53(27): 6965–6969

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This paper has been supported by the Research Council of Shahid Beheshti University and the RUDN University Strategic Academic Leadership Program (A. Shaabani).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ahmad Shaabani.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Javanbakht, S., Nasiriani, T., Farhid, H. et al. Sustainable functionalization and modification of materials via multicomponent reactions in water. Front. Chem. Sci. Eng. 16, 1318–1344 (2022). https://doi.org/10.1007/s11705-022-2150-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11705-022-2150-6

Keywords

Navigation