Skip to main content
Log in

Cystine-assisted accumulation of gold nanoparticles on ZnO to construct a sensitive surface-enhanced Raman spectroscopy substrate

  • Research Article
  • Published:
Frontiers of Chemical Science and Engineering Aims and scope Submit manuscript

Abstract

Recently, various semiconductor/metal composites have been developed to fabricate surface-enhanced Raman spectroscopy substrates. However, low metal loading on semiconductors is still a challenge. In this study, cystine was introduced to increase the accumulation of gold nanoparticles on zinc oxide, owing to the biomineralization property of cystine. Morphological analysis revealed that the obtained ZnO/Au/cystine composite not only had a higher metal loading but also formed a porous structure, which is beneficial for Raman performance. Compared with ZnO/Au, the ZnO/Au/cystine substrate displayed a 40-fold enhancement in the Raman signal and a lower limit of detection (10−11 mol·L−1) in the detection of rhodamine 6G. Moreover, the substrate has favorable homogeneity and stability. Finally, ZnO/Au/cystine displayed excellent performance toward crystal violet and methylene blue in a test based on river water samples. This study provided a promising method to fabricate sensitive semiconductor/noble metal-based surface-enhanced Raman spectroscopy substrates for Raman detection.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Fan M, Andrade G F S, Brolo A G. A review on recent advances in the applications of surface-enhanced Raman scattering in analytical chemistry. Analytica Chimica Acta, 2020, 1097: 1–29

    Article  CAS  PubMed  Google Scholar 

  2. Neng J, Zhang Q, Sun P L. Application of surface-enhanced Raman spectroscopy in fast detection of toxic and harmful substances in food. Biosensors & Bioelectronics, 2020, 167: 112480

    Article  Google Scholar 

  3. Zong C, Xu M, Xu L J, Wei T, Ma X, Zheng X S, Hu R, Ren B. Surface-enhanced Raman spectroscopy for bioanalysis: reliability and challenges. Chemical Reviews, 2018, 118(10): 4946–4980

    Article  CAS  PubMed  Google Scholar 

  4. Cialla May D, Zheng X S, Weber K, Popp J. Recent progress in surface-enhanced Raman spectroscopy for biological and biomedical applications: from cells to clinics. Chemical Society Reviews, 2017, 46(13): 3945–3961

    Article  CAS  PubMed  Google Scholar 

  5. Xu M L, Gao Y, Han X X, Zhao B. Detection of pesticide residues in food using surface-enhanced Raman spectroscopy: a review. Journal of Agricultural and Food Chemistry, 2017, 65(32): 6719–6726

    Article  CAS  PubMed  Google Scholar 

  6. Chakraborty A, Ghosh A, Barui A. Advances in surface-enhanced Raman spectroscopy for cancer diagnosis and staging. Journal of Raman Spectroscopy, 2020, 51(1): 7–36

    Article  CAS  Google Scholar 

  7. Yang B, Wang Y, Guo S, Jin S, Park E, Chen L, Jung Y M. Charge transfer study for semiconductor and semiconductor/metal composites based on surface-enhanced Raman scattering. Bulletin of the Korean Chemical Society, 2021, 42(11): 1411–1418

    Article  CAS  Google Scholar 

  8. Sharma B, Frontiera R R, Henry A I, Ringe E, Van Duyne R P. SERS: materials, applications, and the future. Materials Today, 2012, 15(1–2): 16–25

    Article  CAS  Google Scholar 

  9. Itoh T, Yamamoto Y S. Recent topics on single-molecule fluctuation analysis using blinking in surface-enhanced resonance Raman scattering: clarification by the electromagnetic mechanism. Analyst (London), 2016, 141(17): 5000–5009

    Article  CAS  Google Scholar 

  10. Yang M, Yu J, Lei F, Zhou H, Wei Y, Man B, Zhang C, Li C, Ren J, Yuan X. Synthesis of low-cost 3D-porous ZnO/Ag SERS-active substrate with ultrasensitive and repeatable detectability. Sensors and Actuators B: Chemical, 2018, 256: 268–275

    Article  CAS  Google Scholar 

  11. Hsieh S, Lin P Y, Chu L Y. Improved performance of solution-phase surface-enhanced Raman scattering at Ag/CuO nanocomposite surfaces. Journal of Physical Chemistry C, 2014, 118(23): 12500–12505

    Article  CAS  Google Scholar 

  12. Yang L, Wang W, Jiang H, Zhang Q, Shan H, Zhang M, Zhu K, Lv J, He G, Sun Z. Improved SERS performance of single-crystalline TiO2 nanosheet arrays with coexposed {001} and {101} facets decorated with Ag nanoparticles. Sensors and Actuators B: Chemical, 2017, 242: 932–939

    Article  CAS  Google Scholar 

  13. Li P, Wang X, Zhang X, Zhang L, Yang X, Zhao B. Investigation of the charge-transfer between Ga-doped ZnO nanoparticles and molecules using surface-enhanced Raman scattering: doping induced band-gap shrinkage. Frontiers in Chemistry, 2019, 7: 144

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Doan Q K, Nguyen M H, Sai C D, Pham V T, Mai H H, Pham N H, Bach T C, Nguyen V T, Nguyen T T, Ho K H, Tran T H. Enhanced optical properties of ZnO nanorods decorated with gold nanoparticles for self-cleaning surface enhanced Raman applications. Applied Surface Science, 2020, 505: 7

    Article  Google Scholar 

  15. Liu Y, Ma H, Han X X, Zhao B. Metal-semiconductor heterostructures for surface-enhanced Raman scattering: synergistic contribution of plasmons and charge transfer. Materials Horizons, 2021, 8(2): 370–382

    Article  CAS  PubMed  Google Scholar 

  16. Han X X, Ji W, Zhao B, Ozaki Y. Semiconductor-enhanced Raman scattering: active nanomaterials and applications. Nanoscale, 2017, 9(15): 4847–4861

    Article  CAS  PubMed  Google Scholar 

  17. Yang B, Jin S, Guo S, Park Y, Chen L, Zhao B, Jung Y M. Recent development of SERS technology: semiconductor-based study. ACS Omega, 2019, 4(23): 20101–20108

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Araújo A, Pimentel A, Oliveira M J, Mendes M J, Franco R, Fortunato E, Águas H, Martins R. Direct growth of plasmonic nanorod forests on paper substrates for low-cost flexible 3D SERS platforms. Flexible and Printed Electronics, 2017, 2(1): 014001

    Article  Google Scholar 

  19. Pimentel A, Araújo A, Coelho B, Nunes D, Oliveira M, Mendes M, Águas H, Martins R, Fortunato E. 3D ZnO/Ag surface-enhanced Raman scattering on disposable and flexible cardboard platforms. Materials, 2017, 10(12): 1351

    Article  PubMed Central  Google Scholar 

  20. Kim W, Lee S H, Kim J H, Ahn Y J, Kim Y H, Yu J S, Choi S. Paper-based surface-enhanced Raman spectroscopy for diagnosing prenatal diseases in women. ACS Nano, 2018, 12(7): 7100–7108

    Article  CAS  PubMed  Google Scholar 

  21. Barbillon G, Graniel O, Bechelany M. Assembled Au/ZnO nano-urchins for SERS sensing of the pesticide thiram. Nanomaterials, 2021, 11(9): 2174

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Graniel O, Iatsunskyi I, Coy E, Humbert C, Barbillon G, Michel T, Maurin D, Balme S, Miele P, Bechelany M. Au-covered hollow urchin-like ZnO nanostructures for surface-enhanced Raman scattering sensing. Journal of Materials Chemistry C, 2019, 7(47): 15066–15073

    Article  CAS  Google Scholar 

  23. Dong S, Wang Y, Liu Z, Zhang W, Yi K, Zhang X, Zhang X, Jiang C, Yang S, Wang F, Xiao X. Beehive-inspired macroporous SERS probe for cancer detection through capturing and analyzing exosomes in plasma. ACS Applied Materials & Interfaces, 2020, 12(4): 5136–5146

    Article  CAS  Google Scholar 

  24. Liu K, Yuan C Q, Zou Q L, Xie Z C, Yan X H. Self-assembled zinc/cystine-based chloroplast mimics capable of photoenzymatic reactions for sustainable fuel synthesis. Angewandte Chemie International Edition, 2017, 56(27): 7876–7880

    Article  CAS  PubMed  Google Scholar 

  25. Guan M, Wang M, Qi W, Su R, He Z. Biomineralization-inspired copper-cystine nanoleaves capable of laccase-like catalysis for the colorimetric detection of epinephrine. Frontiers of Chemical Science and Engineering, 2020, 15(2): 310–318

    Article  Google Scholar 

  26. Ejgenberg M, Mastai Y. Biomimetic crystallization of l-cystine hierarchical structures. Crystal Growth & Design, 2012, 12(10): 4995–5001

    Article  CAS  Google Scholar 

  27. Moe O W. Kidney stones: pathophysiology and medical management. Lancet, 2006, 367(9507): 333–344

    Article  CAS  PubMed  Google Scholar 

  28. Jana N R, Gearheart L, Murphy C J. Seeding growth for size control of 5–40 nm diameter gold nanoparticles. Langmuir, 2001, 17(22): 6782–6786

    Article  CAS  Google Scholar 

  29. Yang L L, Yang Y, Ma Y F, Li S, Wei Y Q, Huang Z R, Long N V. Fabrication of semiconductor ZnO nanostructures for versatile SERS application. Nanomaterials, 2017, 7(11): 398

    Article  PubMed  PubMed Central  Google Scholar 

  30. Subramanian V, Wolf E E, Kamat P V. Green emission to probe photoinduced charging events in ZnO-Au nanoparticles. Charge distribution and fermi-level equilibration. Journal of Physical Chemistry B, 2003, 107(30): 7479–7485

    Article  CAS  Google Scholar 

  31. Nuzzo R G, Fusco F A, Allara D L. Spontaneously organized molecular assemblies. 3. Preparation and properties of solution adsorbed monolayers of organic disulfides on gold surfaces. Journal of the American Chemical Society, 1987, 109(8): 2358–2368

    Article  CAS  Google Scholar 

  32. Nuzzo R G, Allara D L. Adsorption of bifunctional organic disulfides on gold surfaces. Journal of the American Chemical Society, 1983, 105(13): 4481–4483

    Article  CAS  Google Scholar 

  33. Nuzzo R G, Zegarski B R, Dubois L H. Fundamental studies of the chemisorption of organosulfur compounds on gold (111). Implications for molecular self-assembly on gold surfaces. Journal of the American Chemical Society, 1987, 109(3): 733–740

    Article  CAS  Google Scholar 

  34. Pal A K, Pagal S, Prashanth K, Chandra G K, Umapathy S, Mohan D B. Ag/ZnO/Au 3D hybrid structured reusable SERS substrate as highly sensitive platform for DNA detection. Sensors and Actuators B: Chemical, 2019, 279: 157–169

    Article  CAS  Google Scholar 

  35. Bharadwaj S, Pandey A, Yagci B, Ozguz V, Qureshi A. Graphene nano-mesh-Ag-ZnO hybrid paper for sensitive SERS sensing and self-cleaning of organic pollutants. Chemical Engineering Journal, 2018, 336: 445–455

    Article  CAS  Google Scholar 

  36. Zhang J, Liu X, Wu S, Cao B, Zheng S. One-pot synthesis of Au-supported ZnO nanoplates with enhanced gas sensor performance. Sensors and Actuators B: Chemical, 2012, 169: 61–66

    Article  CAS  Google Scholar 

  37. Ma Z F, Han H L. One-step synthesis of cystine-coated gold nanoparticles in aqueous solution. Colloids and Surfaces. A, Physicochemical and Engineering Aspects, 2008, 317(1–3): 229–233

    Article  CAS  Google Scholar 

  38. Di Felice R, Selloni A. Adsorption modes of cysteine on Au(111): thiolate, amino-thiolate, disulfide. Journal of Chemical Physics, 2004, 120(10): 4906–4914

    Article  CAS  PubMed  Google Scholar 

  39. Qi D, Lu L, Wang L, Zhang J. Improved SERS sensitivity on plasmon-free TiO2 photonic microarray by enhancing light-matter coupling. Journal of the American Chemical Society, 2014, 136(28): 9886–9889

    Article  CAS  PubMed  Google Scholar 

  40. Macias Montero M, Pelaez R J, Rico V J, Saghi Z, Midgley P, Afonso C N, Gonzalez Elipe A R, Borras A. Laser treatment of Ag@ZnO nanorods as long-life-span SERS surfaces. ACS Applied Materials & Interfaces, 2015, 7(4): 2331–2339

    Article  CAS  Google Scholar 

  41. He X, Wang H, Li Z, Chen D, Liu J, Zhang Q. Ultrasensitive SERS detection of trinitrotoluene through capillarity-constructed reversible hot spots based on ZnO-Ag nanorod hybrids. Nanoscale, 2015, 7(18): 8619–8626

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the support of the National Natural Science Foundation of China (Grant Nos. 21621004 and 22178260), the Tianjin Development Program for Innovation and Entrepreneurship (2018), and the Cooperative Program of Technical Center of Gongbei Customs District of China (Grant No. 2020GKF-0281).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mengfan Wang.

Electronic Supplementary Material

11705_2022_2177_MOESM1_ESM.pdf

Cystine-assisted accumulation of gold nanoparticles on ZnO to construct a sensitive surface-enhanced Raman spectroscopy substrate

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Qu, Q., Zeng, C., Huang, J. et al. Cystine-assisted accumulation of gold nanoparticles on ZnO to construct a sensitive surface-enhanced Raman spectroscopy substrate. Front. Chem. Sci. Eng. 17, 15–23 (2023). https://doi.org/10.1007/s11705-022-2177-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11705-022-2177-8

Keywords

Navigation