Skip to main content
Log in

Improved Deposition Efficiency of Low-Pressure Cold-Sprayed Tin Coating Through Powder Recycling

  • Peer Reviewed
  • Published:
Journal of Thermal Spray Technology Aims and scope Submit manuscript

Abstract

Cold spray is an advanced 3D technique to build thick coatings using ductile powders. Plastic deformations and physical interactions induced by kinetic energy are mainly the origins of interparticle and particle–substrate adhesion. The deposition efficiency, i.e., the quantity of matter deposited compared to the amount propelled, is directly linked to the parameters used in the cold spray. To improve this aspect, parameters’ optimization is also required with other solutions such as using thermally treated powders or powder blending with hard particles. Another approach is recycling powder, though it has not yet been widely evaluated. When depositing a blend of fresh and recycled Sn powder, the results showed improved coating deposition efficiency compared to a batch of 100% fresh or recycled particles. This blend does not significantly change the coating thickness, although it decreases the porosity ratio because of the thermal–mechanical history of the recycled particles. Recycled particles present lower elastic modulus. Finally, coating/substrate adhesion force was unchanged for the blend of fresh and recycled particles, but this still depends on the nature of the powder used.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. A. Moridi, S.M. Hassani-Gangaraj, M. Guagliano and M. Dao, Cold Spray Coating: Review of Material Systems and Future Perspectives, Surf. Eng., 2014, 30(6), p 369-395.

    Article  CAS  Google Scholar 

  2. H. Assadi, H. Kreye, F. Gärtner and T. Klassen, Cold Spraying – A Materials Perspective, Acta Mater., 2016 https://doi.org/10.1016/j.actamat.2016.06.034

    Article  Google Scholar 

  3. Y. Ichikawa, R. Tokoro, M. Tanno and K. Ogawa, Elucidation of Cold-Spray Deposition Mechanism by Auger Electron Spectroscopic Evaluation of Bonding Interface Oxide Film, Acta Mater., 2019, 164, p 39-49.

    Article  CAS  Google Scholar 

  4. H. Zhang, C. Zhao, B. Cui, X. Yan, C. Dou, T. Shao and R. Pan, The Corrosion Behavior of Cold Spray Coating on 2219 Aluminium Alloy Joints Prepared by Friction Stir Welding, J. Phys. Conf. Ser., 2018, 1063, p 012070.

    Article  Google Scholar 

  5. B. Aldwell, E. Kelly, R. Wall, A. Amaldi, G.E. O’Donnell and R. Lupoi, Machinability of Al 6061 Deposited with Cold Spray Additive Manufacturing, J. Therm. Spray Technol., 2017, 26(7), p 1573-1584.

    Article  CAS  Google Scholar 

  6. A.C. Hall, D.J. Cook, R.A. Neiser, T.J. Roemer and D.A. Hirschfeld, The Effect of a Simple Annealing Heat Treatment on the Mechanical Properties of Cold-Sprayed Aluminum, J. Therm. Spray Technol., 2006, 15(2), p 233-238.

    Article  CAS  Google Scholar 

  7. P. Sudharshan Phani, D. Srinivasa Rao, S.V. Joshi and G. Sundararajan, Effect of Process Parameters and Heat Treatments on Properties of Cold Sprayed Copper Coatings, J. Therm. Spray Technol., 2007, 16(3), p 425-434.

    Article  Google Scholar 

  8. W.-Y. Li, C.-J. Li and H. Liao, Effect of Annealing Treatment on the Microstructure and Properties of Cold-Sprayed Cu Coating, J. Therm. Spray Technol., 2006, 15(2), p 206-211.

    Article  CAS  Google Scholar 

  9. M.R. Hasniyati, H. Zuhailawati, R. Sivakumar and B.K. Dhindaw, Optimization of Multiple Responses Using Overlaid Contour Plot and Steepest Methods Analysis on Hydroxyapatite Coated Magnesium via Cold Spray Deposition, Surf. Coat. Technol., 2015, 280, p 250-255.

    Article  CAS  Google Scholar 

  10. J.G. Legoux, E. Irissou and C. Moreau, Effect of Substrate Temperature on the Formation Mechanism of Cold-Sprayed Aluminum, Zinc and Tin Coatings, J. Therm. Spray Technol., 2007, 16(5-6), p 619-626.

    Article  CAS  Google Scholar 

  11. M. Grujicic, C.L. Zhao, W.S. DeRosset and D. Helfritch, Adiabatic Shear Instability Based Mechanism for Particles/Substrate Bonding in the Cold-Gas Dynamic-Spray Process, Mater. Des., 2004, 25(8), p 681-688.

    Article  CAS  Google Scholar 

  12. M. Hassani-Gangaraj, D. Veysset, V.K. Champagne, K.A. Nelson and C.A. Schuh, Adiabatic Shear Instability Is Not Necessary for Adhesion in Cold Spray, Acta Mater., 2018, 158, p 430-439.

    Article  CAS  Google Scholar 

  13. A. Moridi, S.M. Hassani-Gangaraj and M. Guagliano, A Hybrid Approach to Determine Critical and Erosion Velocities in the Cold Spray Process, Appl. Surf. Sci., 2013, 273, p 617-624.

    Article  CAS  Google Scholar 

  14. T. Schmidt, F. Gärtner, H. Assadi and H. Kreye, Development of a Generalized Parameter Window for Cold Spray Deposition, Acta Mater., 2006, 54(3), p 729-742.

    Article  CAS  Google Scholar 

  15. W.-Y. Li, C.-J. Li and H. Liao, Significant Influence of Particle Surface Oxidation on Deposition Efficiency, Interface Microstructure and Adhesive Strength of Cold-Sprayed Copper Coatings, Appl. Surf. Sci., 2010, 256(16), p 4953-4958.

    Article  CAS  Google Scholar 

  16. A. Viscusi, A. Astarita, R.D. Gatta and F. Rubino, A Perspective Review on the Bonding Mechanisms in Cold Gas Dynamic Spray, Surf. Eng., 2019, 35(9), p 743-771.

    Article  CAS  Google Scholar 

  17. W.L. Sulen, K. Ravi, C. Bernard, N. Mary, Y. Ichikawa and K. Ogawa, Effects of Nano-Ceramic Particle Addition for Cold Sprayed Fluoropolymer Coatings, Key Eng. Mater., 2019 https://doi.org/10.4028/www.scientific.net/KEM.813.141

    Article  Google Scholar 

  18. Y. Ichikawa and K. Ogawa, Effect of Substrate Surface Oxide Film Thickness on Deposition Behavior and Deposition Efficiency in the Cold Spray Process, J. Therm. Spray Technol., 2015, 24(7), p 1269-1276.

    Article  Google Scholar 

  19. R. Kromer, S. Costil, C. Verdy, S. Gojon and H. Liao, Laser Surface Texturing to Enhance Adhesion Bond Strength of Spray Coatings – Cold Spraying, Wire-Arc Spraying, and Atmospheric Plasma Spraying, Surf. Coat. Technol., 2018, 352, p 642-653.

    Article  CAS  Google Scholar 

  20. D.K. Christoulis, S. Guetta, E. Irissou, V. Guipont, M.H. Berger, M. Jeandin, J.-G. Legoux, C. Moreau, S. Costil, M. Boustie, Y. Ichikawa and K. Ogawa, Cold-Spraying Coupled to Nano-Pulsed Nd-YaG Laser Surface Pre-Treatment, J. Therm. Spray Technol., 2010, 19(5), p 1062-1073.

    Article  CAS  Google Scholar 

  21. Y. Wang, B. Normand, N. Mary, M. Yu and H. Liao, Effects of Ceramic Particle Size on Microstructure and the Corrosion Behavior of Cold Sprayed SiCp/Al 5056 Composite Coatings, Surf. Coat. Technol., 2017 https://doi.org/10.1016/j.surfcoat.2017.02.047

    Article  Google Scholar 

  22. M. Winnicki, A. Baszczuk, M. Rutkowska-Gorczyca, A. Małachowska and A. Ambroziak, Corrosion Resistance of Tin Coatings Deposited by Cold Spraying, Surf. Eng., 2016, 32(9), p 691-700.

    Article  CAS  Google Scholar 

  23. Y. Wang, B. Normand, N. Mary, M. Yu and H. Liao, Microstructure and Corrosion Behavior of Cold Sprayed SiCp/Al 5056 Composite Coatings, Surf. Coat. Technol., 2014, 251, p 264-275.

    Article  CAS  Google Scholar 

  24. A. Sabard, H.L. de Villiers Lovelock and T. Hussain, Microstructural Evolution in Solution Heat Treatment of Gas-Atomized Al Alloy (7075) Powder for Cold Spray, J. Therm. Spray Technol., 2018, 27(1), p 145-158.

    Article  CAS  Google Scholar 

  25. A.E. Segall, A.N. Papyrin, J.C. Conway and D. Shapiro, A Cold-Gas Spray Coating Process for Enhancing Titanium, JOM, 1998, 50(9), p 52-54.

    Article  CAS  Google Scholar 

  26. C. Walde, D. Cote, V. Champagne and R. Sisson, Characterizing the Effect of Thermal Processing on Feedstock Al Alloy Powder for Additive Manufacturing Applications, J. Mater. Eng. Perform., 2019, 28(2), p 601-610.

    Article  CAS  Google Scholar 

  27. R.G. Neo, K. Wu, S.C. Tan and W. Zhou, Effect of Spray Distance and Powder Feed Rate on Particle Velocity in Cold Spray Processes, Metals, Multidisciplinary Digital Publishing Institute, 2022, 12(1), p 75.

    CAS  Google Scholar 

  28. R.C. Dykhuizen and M.F. Smith, Gas Dynamic Principles of Cold Spray, J. Therm. Spray Technol., 1998, 7(2), p 205-212.

    Article  CAS  Google Scholar 

  29. B. Jodoin, Cold Spray Nozzle Mach Number Limitation, J. Therm. Spray Technol., 2002, 11(4), p 496-507.

    Article  Google Scholar 

  30. D.L. Gilmore, R.C. Dykhuizen, R.A. Neiser, M.F. Smith and T.J. Roemer, Particle Velocity and Deposition Efficiency in the Cold Spray Process, J. Therm. Spray Technol., 1999, 8(4), p 576-582.

    Article  CAS  Google Scholar 

  31. B. Samareh, O. Stier, V. Lüthen and A. Dolatabadi, Assessment of CFD Modeling via Flow Visualization in Cold Spray Process, J. Therm. Spray Technol., 2009, 18(5), p 934.

    Article  CAS  Google Scholar 

  32. S.A. Morsi and A.J. Alexander, An Investigation of Particle Trajectories in Two-Phase Flow Systems, J. Fluid Mech., 1972, 55(02), p 193.

    Article  Google Scholar 

  33. H. Assadi, T. Schmidt, H. Richter, J.-O. Kliemann, K. Binder, F. Gärtner, T. Klassen and H. Kreye, On Parameter Selection in Cold Spraying, J. Therm. Spray Technol., 2011, 20(6), p 1161-1176.

    Article  CAS  Google Scholar 

  34. T. Stoltenhoff, H. Kreye and H.J. Richter, An Analysis of the Cold Spray Process and Its Coatings, J. Therm. Spray Technol., 2002, 11(4), p 542-550.

    Article  CAS  Google Scholar 

  35. C.A. Bernard, H. Takana, G. Diguet, K. Ravi, O. Lame, K. Ogawa and J.-Y. Cavaillé, Thermal Gradient of In-Flight Polymer Particles during Cold Spraying, J. Mater. Process. Technol., 2020, 286, p 116805.

    Article  CAS  Google Scholar 

  36. C.A. Bernard, H. Takana, O. Lame, K. Ogawa and J.-Y. Cavaillé, Influence of the Nozzle Inner Geometry on the Particle History During Cold Spray Process, J. Therm. Spray Technol., 2022 https://doi.org/10.1007/s11666-022-01407-y

    Article  Google Scholar 

  37. “ANSYS FLUENT 12.0 Theory Guide - 15.2.1 Equations of Motion for Particles,” n.d., https://www.afs.enea.it/project/neptunius/docs/fluent/html/th/node241.htm. Accessed 29 April 2022.

  38. M. Walker, Microstructure and Bonding Mechanisms in Cold Spray Coatings, Mater. Sci. Technol., 2018, 34(17), p 2057-2077.

    Article  CAS  Google Scholar 

  39. T. Schmidt, H. Assadi, F. Gärtner, H. Richter, T. Stoltenhoff, H. Kreye and T. Klassen, From Particle Acceleration to Impact and Bonding in Cold Spraying, J. Therm. Spray Technol., 2009, 18(5), p 794.

    Article  Google Scholar 

  40. Y. Chang, J. Wang, P. Mohanty, M.T. Khan, L.N.U. Rehman, L. Shan, C. Fu and J. Wang, The Effect of Cr Particle Size on Cr Deposition Efficiency during Cold Spraying, J. Mater. Eng. Perform., 2022 https://doi.org/10.1007/s11665-021-06486-6

    Article  Google Scholar 

  41. B. Moreno-Murguia, A.G. Mora-Garcia, H. Canales-Siller, A.L. Giraldo-Betancur, D.G. Espinosa-Arbelaez and J. Muñoz-Saldaña, Influence of Stand-off Distance and Pressure in Copper Coatings Deposition Efficiency and Particle Velocity, Surf. Coat. Technol., 2022, 430, p 127986.

    Article  CAS  Google Scholar 

  42. D.H.L. Seng, Z. Zhang, Z.-Q. Zhang, T.L. Meng, S.L. Teo, B.H. Tan, Q. Loi and J. Pan, Influence of Spray Angle in Cold Spray Deposition of Ti-6Al-4V Coatings on Al6061-T6 Substrates, Surf. Coat. Technol., 2022, 432, p 128068.

    Article  CAS  Google Scholar 

  43. R. Morgan, P. Fox, J. Pattison, C. Sutcliffe and W. O’Neill, Analysis of Cold Gas Dynamically Sprayed Aluminium Deposits, Mater. Lett., 2004, 58(7), p 1317-1320.

    Article  CAS  Google Scholar 

  44. P.C. King and M. Jahedi, Relationship between Particle Size and Deformation in the Cold Spray Process, Appl. Surf. Sci., 2010, 256(6), p 1735-1738.

    Article  CAS  Google Scholar 

  45. R.A. Seraj, A. Abdollah-zadeh, S. Dosta, H. Canales, H. Assadi and I.G. Cano, The Effect of Traverse Speed on Deposition Efficiency of Cold Sprayed Stellite 21, Surf. Coat. Technol., 2019, 366, p 24-34.

    Article  CAS  Google Scholar 

  46. T. Van Steenkiste and J.R. Smith, Evaluation of Coatings Produced via Kinetic and Cold Spray Processes, J. Therm. Spray Technol., 2004, 13(2), p 274-282.

    Article  Google Scholar 

  47. M.C. Meyer, S. Yin, K.A. McDonnell, O. Stier and R. Lupoi, Feed Rate Effect on Particulate Acceleration in Cold Spray under Low Stagnation Pressure Conditions, Surf. Coat. Technol., 2016, 304, p 237-245.

    Article  CAS  Google Scholar 

  48. R.K. Hart, The Thermal Oxidation of Tin, Proc. Phys. Soc. Sect. B IOP Publishing, 1952, 65(12), p 955-955–1.

    Article  Google Scholar 

  49. A.F. Lee and R.M. Lambert, Oxidation of Sn Overlayers and the Structure and Stability of Sn Oxide Films on Pd(111), Phys. Rev. B American Physical Society, 1998, 58(7), p 4156-4165.

    Article  CAS  Google Scholar 

  50. W.-Y. Li and W. Gao, Some Aspects on 3D Numerical Modeling of High Velocity Impact of Particles in Cold Spraying by Explicit Finite Element Analysis, Appl. Surf. Sci., 2009, 255(18), p 7878-7892.

    Article  CAS  Google Scholar 

  51. D. Goldbaum, J.M. Shockley, R.R. Chromik, A. Rezaeian, S. Yue, J.-G. Legoux and E. Irissou, The Effect of Deposition Conditions on Adhesion Strength of Ti and Ti6Al4V Cold Spray Splats, J. Therm. Spray Technol., 2012, 21(2), p 288-303.

    Article  CAS  Google Scholar 

  52. J. Sun, K. Yamanaka, S. Zhou, H. Saito, Y. Ichikawa, K. Ogawa and A. Chiba, Adhesion Mechanism of Cold-Sprayed Sn Coatings on Carbon Fiber Reinforced Plastics, Appl. Surf. Sci., 2022, 579, p 151873.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

L. Zarazúa-Villalobos acknowledges the National Council of Science and Technology of Mexico (CONACYT) for the grant provided for the development of this project. C. Bernard acknowledges the Institute of Fluid Science (Tohoku University) for sponsoring this research through the Lyon Center Collaborative Research Grant.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nicolas Mary.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zarazua-Villalobos, L., Mary, N., Bernard, C. et al. Improved Deposition Efficiency of Low-Pressure Cold-Sprayed Tin Coating Through Powder Recycling. J Therm Spray Tech 31, 2577–2593 (2022). https://doi.org/10.1007/s11666-022-01447-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11666-022-01447-4

Keywords

Navigation