Skip to main content

Advertisement

Log in

Bayesian Analysis of Proportions via a Hidden Markov Model

  • Published:
Methodology and Computing in Applied Probability Aims and scope Submit manuscript

Abstract

Time series of proportions arise in many contexts. In this paper, we consider a hidden Markov model (HMM) to describe temporal dependence in such series. In so doing, we introduce a Beta-HMM and develop its Bayesian analysis using Markov Chain Monte Carlo Methods (MCMC). Our proposed model is based on a conjugate prior for beta likelihood which enables us develop Bayesian posterior and predictive computations in an efficient manner. We also address the problem of assessing dimension of the HMM using the marginal likelihood of the model which can be evaluated using posterior samples. Finally, we implement our model and the Bayesian methodology using weekly data on market shares.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Bayes CL, Bazan JL, Garcia CB (2012) A new robust regression model for proportions. Bayesian Anal 7:841–866

    Article  MathSciNet  MATH  Google Scholar 

  • Bayarri MJ (1985) Bayesian inference on the parameters of a beta distribution. Statistics & Decisions (Supplement Issue No. 2):17–21

  • Billio M, Casarin R (2011) Beta autoregressive transition Markov-switching models for businesscycle analysis. Stud Nonlinear Dyn Econom 15(4)

  • Bouguila N, Ziou D, Monga E (2006) Practical Bayesian estimation of a finite beta mixture through Gibbs sampling and its applications. Stat Comput 16:215–225

    Article  MathSciNet  Google Scholar 

  • Branscum AJ, Johnson WO, Thurmond MC (2007) Bayesian beta regression: applications to household expenditure data and generic distance between foot-and-mouth disease viruses. Aust N Z J Stat 49:287–301

    Article  MathSciNet  MATH  Google Scholar 

  • Casarin R, Valle LD, Leisen F (2012) Bayesian model selection for beta autoregressive processes. Bayesian Anal 7(2)

  • Cepeda-Cuervo E, Achcar JA, Lopera LG (2014) Bivariate beta regression models: joint modelling of the mean, dispersion and association parameters. J Appl Stat 41(3):677–687

    Article  MathSciNet  MATH  Google Scholar 

  • Cepeda-Cuervo E, Garrido L (2015) Bayesian beta regression models with joint mean and dispersion modeling. Monte Carlo Methods Appl 21(1):49–58

    Article  MathSciNet  MATH  Google Scholar 

  • Chib S (1995) Marginal likelihood from the Gibbs output. J Am Stat Assoc 90(432):1313–1321

    Article  MathSciNet  MATH  Google Scholar 

  • Chib S, Greenberg E (1995) Understanding the Metropolis-Hastings algorithm. Am Stat 49:327–335

    Google Scholar 

  • Cook DO, Kieschnick R, McCullough BD (2008) Regression analysis of proportions in finance with self selection. J Empir Financ 15(5):860–867

    Article  Google Scholar 

  • Cox C (1996) Nonlinear quasi-likelihood models: applications to continuous proportions. Computational Statistics & Data Aanalysis 21(4):449–461

    Article  MATH  Google Scholar 

  • Cox DR (1981) Statistical analysis of time series: some recent developments. Scand J Stat 8:93–115

    MathSciNet  MATH  Google Scholar 

  • Da-Silva CQ, Migon HS, Correia LT (2011) Dynamic Bayesian beta models. Computational Statistics and Data Analysis 55:2074–2089

    Article  MathSciNet  MATH  Google Scholar 

  • Da-Silva CQ, Migon HS (2016) Hierarchical dynamic beta model. REVSTAT Statistical Journal 14(1):49–73

    MathSciNet  MATH  Google Scholar 

  • Di Brisco AM, Migliorati S (2020) A new mixed-effects mixture model for constrained longitudinal data. Stat Med 39(2):129–145

    Article  MathSciNet  Google Scholar 

  • Dong AXD, Chan JSK (2013) Bayesian analysis of loss reserving using dynamic models with generalized beta distribution. Insurance: Mathematics and Economics 53(2):355–365

    MathSciNet  MATH  Google Scholar 

  • Ferrari S, Cribari-Neto F (2004) Beta regression for modeling rates and proportions. J Appl Stat 31:799–815

    Article  MathSciNet  MATH  Google Scholar 

  • Figueroa-Zuniga JI, Arellano-Valle RB, Ferrari SLP (2013) Mixed beta regression: a Bayesian perspective. Comput Stat Data Anal 61:137–147

    Article  MathSciNet  MATH  Google Scholar 

  • Fruhwirth-Schnatter S (2004) Finite mixture and Markov-switching models. Springer Series in Statistics

  • Gelfand AE (1996) Model determination using sampling-based methods. In: Gilks WR, Richardson S, Spiegelhalter DJ (eds) Markov Chain Monte Carlo in Practice. Chapman & Hall, pp 146–161

  • Grunwald GK, Raftery AE, Guttorp P (1993) Time series of continuous proportions. J R Stat Soc Ser B Stat Methodol 55(1):103–116

    MATH  Google Scholar 

  • Hahn ED (2008) Mixture densities for project management activity times: a robust approach to PERT. Eur J Oper Res 188(2):450–459

    Article  MATH  Google Scholar 

  • Hamilton J (1989) A new approach to the economic analysis of nonstationary time series and the business cycles. Econometrica 57(2):354–384

    Article  MathSciNet  Google Scholar 

  • Hock M, Soyer R (2006) A Bayesian approach to signal analysis of pulse trains. In: Colosimo BM, Del Castillo E (eds) Bayesian Process Monitoring, Control and Optimization. Chapman & Hall, 215-243

  • Jeffreys H (1935) Some tests of significance threated by the theory of probability. Proceedings of the Cambridge Philosophy Society 31:203–222

    Article  MATH  Google Scholar 

  • Jeffreys H (1961) Theory of probability, 3rd edn. Oxford University Press

  • Kass RE, Raftery AE (1995) Bayes factors. J Am Stat Assoc 90(430):773–795

    Article  MathSciNet  MATH  Google Scholar 

  • Li P (2018) Efficient MCMC estimation of inflated beta regression models. Comput Statistics 33(1):127–158

    Article  MathSciNet  MATH  Google Scholar 

  • Ma Z, Leijon A (2011) Bayesian estimation of beta mixture models with variational inference. IEEE Trans Pattern Anal Mach Intell 33(11):2160–2173

    Article  Google Scholar 

  • Migliorati S, Di Brisco AM, Ongaro A (2018) A new regression model for bounded responses. Bayesian Anal 13(3):845–872

    Article  MathSciNet  MATH  Google Scholar 

  • Osthus D, Hickmann KS, Caragea PC, Higdon D, Del Valle SY (2017) Forecasting seasonal influenza with a state-space SIR model. Ann Appl Stat 11(1):202–224

    Article  MathSciNet  MATH  Google Scholar 

  • Papke L, Wooldridge JM (1996) Econometric methods for fractional response variables with an application to 401(K) plan participation rates. J Appl Economet 11(6):619–632

    Article  Google Scholar 

  • Pievatolo A, Ruggeri F, Soyer R (2012) A Bayesian hidden Markov model for imperfect debugging. Reability Engineering and System Safety 103:11–21

    Article  Google Scholar 

  • Smith JQ (1981) The multiparameter steady model. J R Stat Soc Ser B Methodol 43(2):256–260

    MathSciNet  MATH  Google Scholar 

  • Souza D, Moura F (2016) Multivariate beta regression with application in small area estimation. J Off Stat 32(3):747–768

    Article  Google Scholar 

  • Taddy MA (2010) Autoregressive mixture models for dynamic spatial poisson processes: application to tracking intensity of violent crime. J Am Stat Assoc 105(492):1403–1417

    Article  MathSciNet  MATH  Google Scholar 

  • Taufer E (2007) Modelling stylized features in default rates. Appl Stoch Model Bus Ind 23(1):73–82

    Article  MathSciNet  MATH  Google Scholar 

  • Wichern DW, Jones RH (1977) Assessing the impact of market disturbances using intervention analysis. Manag Sci 24(3)

Download references

Acknowledgements

We would like to thank the Scientific and Technological Research Council of Turkey (TÜBİTAK) for its financial support while the first author was visiting the Department of Decision Sciences at the George Washington University as a research fellow. This paper was completed as a result of this research under TÜBİTAK-2214/A International Doctoral Research Fellowship Programme.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ceren Eda Can.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

The posterior probabilities of the hidden states and the MAP Estimation of \({\pmb {X}^{(T)}}\) are given by the following table. Note that the posterior probabilities, which are too small (or large), have been rounded off (see Table 5).

Table 5 Posterior Probabilities of the Hidden State Sequence

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Can, C.E., Ergun, G. & Soyer, R. Bayesian Analysis of Proportions via a Hidden Markov Model. Methodol Comput Appl Probab 24, 3121–3139 (2022). https://doi.org/10.1007/s11009-022-09971-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11009-022-09971-0

Keywords

Mathematics Subject Classification

Navigation