Skip to main content
Log in

Deep Neural Network Prediction Model of Hydrogen Content in VOD Process Based on Small Sample Dataset

  • Original Research Article
  • Published:
Metallurgical and Materials Transactions B Aims and scope Submit manuscript

Abstract

This work combines metallurgical thermodynamics and kinetics to train a high-accuracy and low-cost deep neural network (DNN) prediction model for hydrogen content in vacuum oxygen decarburization (VOD) process. The mean absolute error of the trained DNN model was 0.0258 ppm, and the R2 and root mean square errors were 0.9973 and 0.0329, respectively. The sensitivity of the model to single-feature and multi-feature coupling is tested, and the current VOD process is optimized through the model. It was found that by increasing the consumption of argon to 100 m3, controlling the initial hydrogen content below 8 ppm, and reducing the vacuum to 70 Pa, the final hydrogen content will be reduced to 0.99 ppm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. A.H.S. Bueno, E.D. Moreira, and J.A.C.P. Gomes: Eng. Fail. Anal., 2014, vol. 36, pp. 423–31.

    Article  CAS  Google Scholar 

  2. Z. Fu, T. Li, M. Shan, G. Gou, Z. Zhu, C. Ma, W. Gao, and Y. Hu: Corros. Sci., 2019, vol. 148, pp. 272–80.

    Article  CAS  Google Scholar 

  3. J. Wei and Y. Li: Steel Res. Int., 2015, vol. 86, pp. 189–211.

    Article  CAS  Google Scholar 

  4. K. Steneholm, M. Andersson, A. Tilliander, and P.G. Jönsson: Ironmak. Steelmak., 2019, vol. 40, pp. 199–205.

    Article  CAS  Google Scholar 

  5. B. Kleimt, S. Köhle, K.P. Johann, A. Jungreithmeier, and J. Molinero: Scand. J. Metall., 2000, vol. 29, pp. 194–205.

    Article  CAS  Google Scholar 

  6. S. Guo, J. Yu, X. Liu, C. Wang, and Q. Jiang: Comput. Mater. Sci., 2019, vol. 160, pp. 95–104.

    Article  CAS  Google Scholar 

  7. C. Shen, C. Wang, X. Wei, Y. Li, S.V.D. Zwaag, and W. Xu: Acta Mater., 2019, vol. 179, pp. 201–14.

    Article  CAS  Google Scholar 

  8. D. Cemernek, S. Cemernek, H. Gursch, A. Pandeshwar, T. Leitner, M. Berger, G. Klösch, and R. Kern: J. Intell. Manuf., 2021, vol. 1, pp. 1–9.

    Google Scholar 

  9. X. Li, C.C. Roth, and D. Mohr: Int. J. Plast, 2019, vol. 118, pp. 320–44.

    Article  CAS  Google Scholar 

  10. K. Tsutsui, H. Terasaki, T. Maemura, K. Hayashi, K. Moriguchi, and S. Morito: Comput. Mater. Sci., 2019, vol. 159, pp. 403–11.

    Article  CAS  Google Scholar 

  11. G. Zhai, Y. Narazaki, S. Wang, S. Shajihan, and B. Spencer: Smart Struct. Syst., 2022, vol. 29, pp. 237–50.

    Google Scholar 

  12. X. Gao, F. Deng, and X. Yue: Neurocomputing, 2020, vol. 396, pp. 487–94.

    Article  Google Scholar 

  13. W. Chen, Y. Gao, L. Gao, and X. Li: Proc. CIRP, 2018, vol. 72, pp. 1069–72.

    Article  Google Scholar 

  14. C. Shen, X. Wei, C. Wang, and W. Xu: Mater. Charact., 2021, vol. 180, 111392.

    Article  CAS  Google Scholar 

  15. A. Kordijazi, S. Behera, D. Patel, P. Rohatgi, and M. Nosonovsky: Langmuir, 2021, vol. 37, pp. 3766–77.

    Article  CAS  Google Scholar 

  16. L. Li, B. Xie, Q. Fang, and J. Li: Metall. Mater. Trans. B, 2021, vol. 52, pp. 439–48.

    Article  CAS  Google Scholar 

  17. W. Mu, M. Rahaman, F.L. Rios, J. Odqvist, and P. Hedström: Mater. Des., 2021, vol. 197, 109199.

    Article  CAS  Google Scholar 

  18. S. Yu and S. Louhenkilpi: Metall. Mater. Trans. B, 2012, vol. 44, pp. 459–68.

    Article  CAS  Google Scholar 

  19. A. Teeuwsen: Vak. Forsch Prax., 2014, vol. 26, pp. 32–37.

    Article  CAS  Google Scholar 

  20. R. Ding, B. Blanpain, P.T. Jones, and P. Wollants: Metall. Mater. Trans. B, 2000, vol. 31, pp. 197–206.

    Article  Google Scholar 

  21. M. Tan: Special Steel Technol., 2017, vol. 23, pp. 36–38.

    Google Scholar 

  22. F. Karouni, B.P. Wynne, J. Talamantes-Silva, and S. Phillips: ISIJ Int., 2018, vol. 58, pp. 1679–86.

    Article  CAS  Google Scholar 

  23. B. Kleimt, S. Köhle, and A. Jungreithmeier: Steel Res., 2001, vol. 72, pp. 337–45.

    Article  CAS  Google Scholar 

  24. Y. Xu, Z. Chen, and G. Zhang: Metall. Mater. Trans. B, 2009, vol. 40, pp. 345–52.

    Article  CAS  Google Scholar 

  25. M.A. Van Ende, Y.M. Kim, M.K. Cho, J. Choi, and I.H. Jung: Metall. Mater. Trans. B, 2011, vol. 42, pp. 477–89.

    Article  CAS  Google Scholar 

  26. M.M. Bejani and M. Ghatee: Artif. Intell. Rev., 2021, vol. 54, pp. 6391–438.

    Article  Google Scholar 

  27. S.A. Rebuffi, S. Gowal, and D.A. Calian: Adv. Neural. Inf. Process. Syst., 2021, vol. 34, pp. 477–89.

    Google Scholar 

  28. C. Shorten, T.M. Khoshgoftaar, and B. Furht: J. Big Data, 2021, vol. 8, pp. 1–34.

    Article  Google Scholar 

  29. H.D. Linh and N.T. Anh: J. Sci. Technol. Inf. Secur., 2021, vol. 2, pp. 55–65.

    Google Scholar 

  30. D.K. Thara, B.G. PremaSudha, and F. Xiong: Patt. Recogn. Lett., 2019, vol. 128, pp. 544–50.

    Article  Google Scholar 

  31. S. Cofre-Martel, E. LopezDroguett, and M. Modarres: Sensors, 2021, vol. 21, p. 6841.

    Article  Google Scholar 

  32. T.S. Gunawan and M. Kartiwi: Indones. J. Electr. Eng. Comput. Sci., 2018, vol. 12, pp. 722–28.

    Google Scholar 

  33. I.M. Kamal, H. Bae, S. Sim, and H. Kim: ICIC Express Lett., 2019, vol. 13, pp. 427–34.

    Google Scholar 

  34. W. Haoxiang and S. Smys: J. Ubiquitous Comput. Commun. Technol., 2021, vol. 3, pp. 10–22.

    Google Scholar 

  35. K. Vijayakumar, V.J. Kadam, and S.K. Sharma: Concurr. Eng., 2021, vol. 29, pp. 275–84.

    Article  Google Scholar 

  36. S.H. Wang, K. Muhammad, J. Hong, A.K. Sangaiah, and Y.D. Zhang: Neural Comput. Appl., 2020, vol. 32, pp. 665–80.

    Article  Google Scholar 

  37. S.S. Lee, S.T. Choi, and S.I. Choi: Sensors, 2019, vol. 19, pp. 1–5.

    Article  Google Scholar 

  38. Y. Li, N. Wang, J. Shi, X. Hou, and J. Liu: Pattern Recogn., 2018, vol. 80, pp. 1–24.

    Article  Google Scholar 

  39. I. Nurhaida, V. Ayumi, D. Fitrianah, R.A.M. Zen, H. Noprisson, and H. Wei: Int. J. Electr. Comput. Eng., 2020, vol. 10, pp. 132–44.

    Google Scholar 

  40. I. Cortes-Ciriano and A. Bender: J. Chem. Inf. Model, 2019, vol. 59, pp. 1–25.

    Article  CAS  Google Scholar 

  41. K. Wang, P. Wu, H. Cui, and H. Su: Comput. Electron. Agric., 2021, vol. 187, 106275.

    Article  Google Scholar 

  42. J. Wang and J. Cao: Geophysics, 2021, vol. 86, pp. 185–96.

    Article  Google Scholar 

  43. Q. Zhou, F. Lu, M. Xu, P.C. Peng, S. Liu, S. Shen, R. Zhang, S. Yao, J. Finkelstein, and G.K. Chang: IEEE Photon. Technol. Lett., 2018, vol. 30, pp. 1–4.

    Article  CAS  Google Scholar 

  44. B. Zraibi, C. Okar, H. Chaoui, and M. Mansouri: IEEE Trans. Veh. Technol., 2021, vol. 70, pp. 4252–61.

    Article  Google Scholar 

  45. S. Lee, Y. Lee, Y. Lee, M. Kim, S. Shin, J. Park, and K. Min: Int. J. Automot. Technol., 2020, vol. 21, pp. 571–78.

    Article  CAS  Google Scholar 

  46. Y. Cui, S. Ma, Z. Yao, X. Chen, Z. Luo, W. Fan, and Y. Hong: Remote Sens., 2020, vol. 12, pp. 1–7.

    Google Scholar 

Download references

Acknowledgments

The authors are grateful for the financial support of this work from the National Natural Science Foundation of China (No.51922003, U1810207, and FRF-TP-19-004C1).

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lijun Wang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, W., Wang, L., Zhang, W. et al. Deep Neural Network Prediction Model of Hydrogen Content in VOD Process Based on Small Sample Dataset. Metall Mater Trans B 53, 3124–3135 (2022). https://doi.org/10.1007/s11663-022-02592-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11663-022-02592-5

Navigation