Skip to main content
Log in

Approximate inversion for Abel integral operators of variable exponent and applications to fractional Cauchy problems

  • Published:
Fractional Calculus and Applied Analysis Aims and scope Submit manuscript

Abstract

We investigate the variable-exponent Abel integral equations and corresponding fractional Cauchy problems. The main contributions are twofold: We provide a novel inverse technique to convert the first-kind Volterra integral equation of variable exponent to a second-kind one, which, to our best knowledge, is not available in the literature; Based on this transformation, we carry out rigorous analysis to prove several theoretical results and their dependence on the variable exponent. In general, we conclude that by setting an integer limit of variable exponent \(\alpha (t)\) at the initial time \(t=0\), the variable-exponent problems have similar properties as their integer-order analogues. Otherwise, they behave like their constant-exponent counterparts of order \(\alpha \equiv \alpha (0)\). To be specific, we prove that the sensitive dependence of the well-posedness of classical Riemann-Liouville fractional differential equations on the initial value and the singularity of their solutions could be resolved by adjusting the variable exponent at the initial time, which demonstrates the advantages of introducing the variable exponent. The above findings suggest that the variable-exponent fractional problems may serve as a connection between integer-order and fractional models by adjusting the variable exponent at the initial time.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Adams, R., Fournier, J.: Sobolev Spaces. Elsevier, San Diego (2003)

    MATH  Google Scholar 

  2. Brunner, H.: Collocation methods for Volterra integral and related functional differential equations. Cambridge University Press, Cambridge (2004)

    Book  Google Scholar 

  3. Cuesta, E., Kirane, M., Alsaedi, A., Ahmad, B.: On the sub-diffusion fractional initial value problem with time variable order. Adv. Nonlinear Anal. 10(1), 1301–1315 (2021)

    Article  MathSciNet  Google Scholar 

  4. Deng, W., Li, B., Tian, W., Zhang, P.: Boundary problems for the fractional and tempered fractional operators. Multiscale Model. Simul. 16(1), 125–149 (2018)

    Article  MathSciNet  Google Scholar 

  5. Diethelm, K., Ford, N.: Analysis of fractional differential equations. J. Math. Anal. Appl. 265(2), 229–248 (2002)

    Article  MathSciNet  Google Scholar 

  6. Garrappa, R., Giusti, A., Mainardi, F.: Variable-order fractional calculus: A change of perspective. Commun. Nonlinear Sci. Numer. Simul. 102, Art. 105904 (2021)

  7. Gorenflo, R., Vessella, S.: Abel Integral Equations. Analysis and Applications. Springer-Verlag, Berlin (1991)

    Book  Google Scholar 

  8. Gradshteyn, I., Ryzhik, I.: Table of Integrals, Series, and Products. Elsevier/Academic Press, Amsterdam (2007)

    MATH  Google Scholar 

  9. Hackbusch, W.: Integral Equations: Theory and Numerical Treatment. Birkhäuser, Basel (1995)

    Book  Google Scholar 

  10. Kilbas, A., Srivastava, H., Trujillo, J.: Theory and Applications of Fractional Differential Equations. Elsevier Science B.V, Amsterdam (2006)

    MATH  Google Scholar 

  11. Liang, H., Stynes, M.: A general collocation analysis for weakly singular Volterra integral equations with variable exponent. https://www.researchgate.net/publication/354462340_A_general_collocation_analysis_ for_weakly_singular_Volterra_integral_equations_with_variable_exponent

  12. Luchko, Y.: Initial-boundary-value problems for the one-dimensional time-fractional diffusion equation. Fract. Calc. Appl. Anal. 15(1), 141–160 (2012). https://doi.org/10.2478/s13540-012-0010-7

    Article  MathSciNet  MATH  Google Scholar 

  13. Lorenzo, C., Hartley, T.: Variable order and distributed order fractional operators. Nonlinear Dyn. 29(1–4), 57–98 (2002)

    Article  MathSciNet  Google Scholar 

  14. Moghaddam, B., Machado, J.: Extended algorithms for approximating variable order fractional derivatives with applications. J. Sci. Comput. 71(3), 1351–1374 (2017)

    Article  MathSciNet  Google Scholar 

  15. Podlubny, I.: Fractional Differential Equations. Academic Press Inc, San Diego (1999)

    MATH  Google Scholar 

  16. Sabzikar, F., Meerschaert, M., Chen, J.: Tempered fractional calculus. J. Comput. Phys. 293, 14–28 (2015)

    Article  MathSciNet  Google Scholar 

  17. Sakamoto, K., Yamamoto, M.: Initial value/boundary value problems for fractional diffusion-wave equations and applications to some inverse problems. J. Math. Anal. Appl. 382(1), 426–447 (2011)

    Article  MathSciNet  Google Scholar 

  18. Samko, S.: Fractional integration and differentiation of variable order: An overview. Nonlinear Dyn. 71(4), 653–662 (2013)

    Article  MathSciNet  Google Scholar 

  19. Samko, S., Ross, B.: Integration and differentiation to a variable fractional order. Integr. Transf. Spec. Funct. 1(4), 277–300 (1993)

    Article  MathSciNet  Google Scholar 

  20. Sun, H., Chang, A., Zhang, Y., Chen, W.: A review on variable-order fractional differential equations: mathematical foundations, physical models, numerical methods and applications. Fract. Calc. Appl. Anal. 22(1), 27–59 (2019). https://doi.org/10.1515/fca-2019-0003

    Article  MathSciNet  MATH  Google Scholar 

  21. Tavares, D., Almeida, R., Torres, D.: Caputo derivatives of fractional variable order: numerical approximations. Commun. Nonlinear Sci. Numer. Simul. 35, 69–87 (2016)

    Article  MathSciNet  Google Scholar 

  22. Wang, H., Zheng, X.: Wellposedness and regularity of the variable-order time-fractional diffusion equations. J. Math. Anal. Appl. 475(2), 1778–1802 (2019)

    Article  MathSciNet  Google Scholar 

  23. Webb, J.: Weakly singular Gronwall inequalities and applications to fractional differential equations. J. Math. Anal. Appl. 471(1–2), 692–711 (2019)

    Article  MathSciNet  Google Scholar 

  24. Zeng, F., Zhang, Z., Karniadakis, G.: A generalized spectral collocation method with tunable accuracy for variable-order fractional differential equations. SIAM J Sci. Comput. 37(6), A2710–A2732 (2015)

    Article  MathSciNet  Google Scholar 

  25. Zheng, X., Wang, H.: An optimal-order numerical approximation to variable-order space-fractional diffusion equations on uniform or graded meshes. SIAM J. Numer. Anal. 58(1), 330–352 (2020)

    Article  MathSciNet  Google Scholar 

  26. Zhuang, P., Liu, F., Anh, V., Turner, I.: Numerical methods for the variable-order fractional advection-diffusion equation with a nonlinear source term. SIAM J Numer. Anal. 47(3), 1760–1781 (2009)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

The authors would like to express their most sincere thanks to the referees for their very helpful comments and suggestions, which greatly improved the quality of this paper. This work was partially funded by International Postdoctoral Exchange Fellowship Program (Talent-Introduction Program) YJ20210019 and by the China Postdoctoral Science Foundation 2021TQ0017 and 2021M700244.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiangcheng Zheng.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zheng, X. Approximate inversion for Abel integral operators of variable exponent and applications to fractional Cauchy problems. Fract Calc Appl Anal 25, 1585–1603 (2022). https://doi.org/10.1007/s13540-022-00071-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13540-022-00071-x

Keywords

Mathematics Subject Classification

Navigation