Skip to main content
Log in

Ionization-Recombination Process as a Means of Indicating the Degree of Focusing of a Beam of Charged Particles or Ionizing Radiation

  • Published:
Journal of Surface Investigation: X-ray, Synchrotron and Neutron Techniques Aims and scope Submit manuscript

Abstract

A method for controlling the focusing of an ionizing-radiation beam, for example, a beam of charged particles, is proposed. Ionization is one of the most widely used radiation-detection methods. The effect of the recombination of charge carriers in the working substance of the detector, accompanying ionization, is usually considered as undesirable, which reduces the accuracy of measuring the radiation parameters. However, this effect can be useful and be the basis of a method for determining the maximum degree of focusing of a beam of particles or ionizing radiation. At a fixed value of the total beam current (ionizing-radiation flux), the maximum focusing is determined from the minimum value of the ionization current in a wide-aperture ionization chamber, which is used as a detector. The signal of the ionization chamber changes during focusing even at a fixed value of the beam current due to the dependence of the intensity of the recombination of charge carriers in the working substance of the chamber on their bulk density. The bulk density of carriers, in turn, is proportional to the distribution density of particles of the ionizing-radiation beam in the volume of the working medium of the ionization chamber.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1.
Fig. 2.
Fig. 3.

Similar content being viewed by others

REFERENCES

  1. Accelerators and Beams Tools of Discovery and Innovation (Division of Physics of Beams, Am. Phys. Soc., 2013). http://www.aps.org/units/dpb/upload/accel_beams_ 2013.pdf.

  2. I. Y. Vladimirov, B. S. Ishkhanov, L. Y. Ovchinnikova, et al., Moscow Univ. Phys. Bull. (Engl. Transl.) 71, 245 (2016). https://doi.org/10.3103/S0027134916030139

  3. V. I. Pavlenko, R. N. Yastrebinskii, O. D. Edamenko, and D. G. Tarasov, Vopr. At. Nauki Tekh., Ser.: Fiz. Radiats. Povrezhdenii Radiats. Materialoved., No. 1, 129 (2010).

  4. M. F. Vorogushin, V. A. Glukhikh, G. Sh. Manukyan, D. A. Karpov, M. P. Svin’in, V. I. Engel’ko, and B. P. Yatsenko, Vopr. At. Nauki Tekh., Ser.: Fiz. Radiats. Povrezhdenii Radiats. Materialoved., No. 3, 101 (2002).

  5. M. Vretenar, Accelerators for Medicine. Academic Training Lecture Regular Programme (CERN, June 2018). https://indico.cern.ch/event/722936/

  6. A. V. Grizlov, V. N. Iliin, S. V. Lamonov, et al., in Proc. XI Int. Conf. on Charged Particle Accelerators Applied in Medicine and Industry (St. Petersburg, 2005), p. 132.

  7. A. S. Alimov, E. A. Alimov, A. N. Kamanin, et al., in Proc. RuPAC 2008 (Zvenigorod, 2008), p. 267. http://www.researchgate.net/publication/238769202_ Beam_parameters_measurement_of_technological_ 10_MEV_linac. Accessed October 11, 2021.

  8. A. P. Chernyaev, M. A. Kolyvanova, and P. Yu. Borshchegovskaya, Moscow Univ. Phys. Bull. (Engl. Transl.) 70, 457 (2015). https://doi.org/10.3103/S0027134915060090

  9. V. I. Boiko, A. N. Valyae, and A. D. Pogrebnyak, Phys.—Usp. 42, 1139 (1999). https://doi.org/10.1070/PU1999v042n11ABEH000471

    Article  CAS  Google Scholar 

  10. R. A. Salimov, Phys.—Usp. 43, 189 (2000). https://doi.org/10.1070/1070pu2000v043n02ABEH000671

    Article  CAS  Google Scholar 

  11. A. G. Gurin, E. A. Kornilov, and R. S. Lozhkin, Elektrotekh. Elektromekh., No. 4, 47 (2013).

  12. M. R. Cleland, in Industrial Applications of Electron Accelerators (CERN Accelerator School, Zeegse, 2005), p. 383.

    Google Scholar 

  13. S. Machi, in Proc. Int. Topical Meeting on Nuclear Research Applications and Utilization of Accelerators (Vienne, 2009), SM/EB-04.

  14. D. H. Wilkinson, Ionization Chambers and Counters (Cambridge Univ. Press, New York, 1950).

    Google Scholar 

  15. Y. I. Bychkow, Y. D. Korolevn, and A. P. Khuzeev, Sov. Tech. Phys. 19, 140 (1974).

    Google Scholar 

  16. A. V. Eletskii and B. M. Smirnov, Sov. Phys. Usp. 25, 13 (1982). https://doi.org/10.1070/PU1982v025n01ABEH004494

    Article  Google Scholar 

  17. R. Hooke and T. A. Jeeves, J. Assoc. Comput. Mach. 8, 212 (1961).

    Article  Google Scholar 

  18. J. A. Nelder and R. Mead, Comput. J. 7, 308 (1965).

    Article  Google Scholar 

  19. S. V. Blazhevich and V. A. Stratienko, USSR Patent No. 1 667 519, 1991.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. V. Blazhevich.

Ethics declarations

The authors declare that they have no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Blazhevich, S.V., Noskov, A.V. Ionization-Recombination Process as a Means of Indicating the Degree of Focusing of a Beam of Charged Particles or Ionizing Radiation. J. Surf. Investig. 16, 503–506 (2022). https://doi.org/10.1134/S1027451022030235

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1027451022030235

Keywords:

Navigation