Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Incoherent broadband mid-infrared detection with lanthanide nanotransducers

Abstract

Spectral conversion of mid-infrared (MIR) radiation to visible (VIS) and near-infrared (NIR) wavelengths is a fundamental technology for spectroscopy and imaging; however, current MIR-to-VIS/NIR conversion technology is limited to nonlinear optics with bulky crystals or resonant nanocavities. Here we report lanthanide-based MIR-to-NIR nanotransducers that enable broadband MIR sensing at room temperature by harnessing ratiometric luminescence changes. The ratiometric luminescence of lanthanide nanotransducers in the NIR region can be incoherently modulated by MIR radiation in the 4.5–10.8 µm wavelength range. Ratiometric modulation of luminescence enables a detection limit of ~0.3 nW × µm−2 with an internal quantum efficiency on the order of 3 × 10−3. The ratiometric sensor based on lanthanide nanotransducers does not require cryogenic cooling, polarization control, phase matching or nanoantenna design for light confinement. We also developed a camera with lanthanide nanotransducers, which enable room-temperature MIR imaging. We anticipate that these lanthanide nanotransducers can be extended to MIR light manipulation at the microscale for chip-integrated device applications.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Mechanism of incoherent broadband MIR detection using lanthanide nanotransducers.
Fig. 2: Ratiometric luminescence transduction from MIR radiation to the NIR region.
Fig. 3: Response of ratiometric luminescent nanotransducers to MIR stimulation.
Fig. 4: Proof-of-concept for lanthanide nanotransducer-mediated broadband gas sensing and room-temperature MIR imaging with a CMOS camera.

Similar content being viewed by others

Data availability

All relevant data that support the findings of this work are available from the corresponding author on reasonable request. Source Data are provided with this paper.

Code availability

The Mathematica and 1stOpt-based codes for theoretical modelling and numerical simulations are available from the corresponding author on reasonable request.

References

  1. Waynant, R. W., Ilev, I. K. & Gannot, I. Mid-infrared laser applications in medicine and biology. Philos. Trans. R. Soc. A 359, 635–644 (2001).

    Article  ADS  Google Scholar 

  2. Ouzounov, D. & Freund, F. Mid-infrared emission prior to strong earthquakes analyzed by remote sensing data. Adv. Space Res. 33, 268–273 (2004).

    Article  ADS  Google Scholar 

  3. Tittel, F. K. et al. in Terahertz and Mid Infrared Radiation: Detection of Explosives and CBRN (Using Terahertz) 153–165 (Springer, 2014).

  4. Ring, E. Beyond human vision: the development and applications of infrared thermal imaging. Imaging Sci. J. 58, 254–260 (2010).

    Article  Google Scholar 

  5. de Cumis, M. S. et al. Widely-tunable mid-infrared fiber-coupled quartz-enhanced photoacoustic sensor for environmental monitoring. Opt. Express 22, 28222–28231 (2014).

    Article  ADS  Google Scholar 

  6. Du, Z., Zhang, S., Li, J., Gao, N. & Tong, K. Mid-infrared tunable laser-based broadband fingerprint absorption spectroscopy for trace gas sensing: a review. Appl. Sci. 9, 338 (2019).

    Article  Google Scholar 

  7. Roellig, T. L. et al. Mid-infrared detector development for the Origins Space Telescope. J. Astron. Telesc. Instrum. Syst. 6, 041503 (2020).

    Article  ADS  Google Scholar 

  8. Rogalski, A. Infrared detectors: an overview. Infrared Phys. Technol. 43, 187–210 (2002).

    Article  ADS  Google Scholar 

  9. Stuart, B. H. Infrared Spectroscopy: Fundamentals and Applications (Wiley, 2004).

  10. Temporão, G. et al. Mid-infrared single-photon counting. Opt. Lett. 31, 1094–1096 (2006).

    Article  ADS  Google Scholar 

  11. Dam, J. S., Tidemand-Lichtenberg, P. & Pedersen, C. Room-temperature mid-infrared single-photon spectral imaging. Nat. Photon. 6, 788–793 (2012).

    Article  ADS  Google Scholar 

  12. Tseng, Y.-P., Pedersen, C. & Tidemand-Lichtenberg, P. Upconversion detection of long-wave infrared radiation from a quantum cascade laser. Opt. Mater. Express 8, 1313–1321 (2018).

    Article  ADS  Google Scholar 

  13. Ashik, A. et al. Mid-infrared upconversion imaging using femtosecond pulses. Photon. Res. 7, 783–791 (2019).

    Article  Google Scholar 

  14. Mancinelli, M. et al. Mid-infrared coincidence measurements on twin photons at room temperature. Nat. Commun. 8, 1–8 (2017).

    Article  Google Scholar 

  15. Chen, W. et al. Continuous-wave frequency upconversion with a molecular optomechanical nanocavity. Science 374, 1264–1267 (2021).

    Article  ADS  Google Scholar 

  16. Xomalis, A. et al. Detecting mid-infrared light by molecular frequency upconversion in dual-wavelength nanoantennas. Science 374, 1268–1271 (2021).

    Article  ADS  Google Scholar 

  17. Wegh, R. T., Donker, H., Oskam, K. D. & Meijerink, A. Visible quantum cutting in LiGdF4:Eu3+ through downconversion. Science 283, 663–666 (1999).

    Article  ADS  Google Scholar 

  18. Liu, Y. et al. Amplified stimulated emission in upconversion nanoparticles for super-resolution nanoscopy. Nature 543, 229–233 (2017).

    Article  ADS  Google Scholar 

  19. Lee, C. et al. Giant nonlinear optical responses from photon-avalanching nanoparticles. Nature 589, 230–235 (2021).

    Article  ADS  Google Scholar 

  20. Fernandez-Bravo, A. et al. Continuous-wave upconverting nanoparticle microlasers. Nat. Nanotechnol. 13, 572–577 (2018).

    Article  ADS  Google Scholar 

  21. Liang, L. et al. Continuous-wave near-infrared stimulated-emission depletion microscopy using downshifting lanthanide nanoparticles. Nat. Nanotechnol. 16, 975–980 (2021).

    Article  ADS  Google Scholar 

  22. Chen, S. et al. Near-infrared deep brain stimulation via upconversion nanoparticle-mediated optogenetics. Science 359, 679–684 (2018).

    Article  ADS  Google Scholar 

  23. Bünzli, J.-C. G. & Piguet, C. Taking advantage of luminescent lanthanide ions. Chem. Soc. Rev. 34, 1048–1077 (2005).

    Article  Google Scholar 

  24. Malta, O. L. & Carlos, L. D. Intensities of 4f–4f transitions in glass materials. Quim. Nova 26, 889–895 (2003).

    Article  Google Scholar 

  25. Walsh, B. M., Lee, H. R. & Barnes, N. P. Mid infrared lasers for remote sensing applications. J. Lumin. 169, 400–405 (2016).

    Article  Google Scholar 

  26. Cadatal-Raduban, M. et al. Mid-infrared imaging through up-conversion luminescence in trivalent lanthanide ion-doped self-organizing optical fiber array crystal. Opt. Lett. 46, 941–944 (2021).

    Article  ADS  Google Scholar 

  27. Park, S.-H., Kwon, N., Lee, J.-H., Yoon, J. & Shin, I. Synthetic ratiometric fluorescent probes for detection of ions. Chem. Soc. Rev. 49, 143–179 (2020).

    Article  Google Scholar 

  28. Smentek, L. Theoretical description of the spectroscopic properties of rare earth ions in crystals. Phys. Rep. 297, 155–237 (1998).

    Article  ADS  Google Scholar 

  29. Dorenbos, P. The 4fn ↔ 4fn−1 5d transitions of the trivalent lanthanides in halogenides and chalcogenides. J. Lumin. 91, 91–106 (2000).

    Article  Google Scholar 

  30. Danielmeyer, H., Blätte, M. & Balmer, P. Fluorescence quenching in Nd:YAG. Appl. Phys. 1, 269–274 (1973).

    Article  ADS  Google Scholar 

  31. Chen, G. et al. Core/shell NaGdF4:Nd3+/NaGdF4 nanocrystals with efficient near-infrared to near-infrared downconversion photoluminescence for bioimaging applications. ACS Nano 6, 2969–2977 (2012).

    Article  Google Scholar 

  32. Gordon, I. E. et al. The HITRAN2020 molecular spectroscopic database. J. Quant. Spectrosc. Radiat. Transf. 277, 107949 (2022).

    Article  Google Scholar 

  33. Dam, J. S., Pedersen, C. & Tidemand-Lichtenberg, P. High-resolution two-dimensional image upconversion of incoherent light. Opt. Lett. 35, 3796–3798 (2010).

    Article  ADS  Google Scholar 

  34. Dong, H., Sun, L.-D. & Yan, C.-H. Energy transfer in lanthanide upconversion studies for extended optical applications. Chem. Soc. Rev. 44, 1608–1634 (2015).

    Article  Google Scholar 

  35. Liu, H. et al. Tunable resonator‐upconverted emission (TRUE) color printing and applications in optical security. Adv. Mater. 31, 1807900 (2019).

    Article  Google Scholar 

  36. Wang, F. et al. Simultaneous phase and size control of upconversion nanocrystals through lanthanide doping. Nature 463, 1061–1065 (2010).

    Article  ADS  Google Scholar 

  37. Tian, J. et al. Intracellular adenosine triphosphate deprivation through lanthanide-doped nanoparticles. J. Am. Chem. Soc. 137, 6550–6558 (2015).

    Article  Google Scholar 

  38. Wolfram Research, Inc., Mathematica, Version 13.1, Champaign, IL (2022).

Download references

Acknowledgements

This work was supported by the Singapore Ministry of Education (grant nos. MOE2017-T2-2-110 and MOE2016-T3-1-006(S)), the Agency for Science, Technology and Research (A*STAR) (grant nos. A1983c0038 and A2090b0144), and National Research Foundation, Prime Minister’s Office, Singapore (award nos. NRF-NRFI05-2019-003, NRF-CRP18-2017-02, NRF-CRP22-2019-0002 and NRF-CRP19-2017-01).

Author information

Authors and Affiliations

Authors

Contributions

L.L. and X.L. conceived the idea. X.L. and Q.J.W. supervised the project and led the collaborative efforts. L.L. designed the nanotransducers and conducted numerical simulations with contributions from J.C. L.L. and C.W. conducted optical experiments. L.L., C.W. and X.L. wrote the manuscript. All authors participated in the discussion and analysis of the manuscript.

Corresponding authors

Correspondence to Liangliang Liang, Qi Jie Wang or Xiaogang Liu.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Nanotechnology thanks Guanying Chen, Dayong Jin and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–8 and Table 1.

Reporting Summary

Source data

Source Data Fig. 2

Source Data for Fig. 2b,c.

Source Data Fig. 3

Source Data for Fig. 3.

Source Data Fig. 4

Source Data for Fig. 4a,b.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liang, L., Wang, C., Chen, J. et al. Incoherent broadband mid-infrared detection with lanthanide nanotransducers. Nat. Photon. 16, 712–717 (2022). https://doi.org/10.1038/s41566-022-01042-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41566-022-01042-7

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing