Skip to main content
Log in

Kähler Geometry of Framed Quiver Moduli and Machine Learning

  • Published:
Foundations of Computational Mathematics Aims and scope Submit manuscript

Abstract

We develop an algebro-geometric formulation for neural networks in machine learning using the moduli space of framed quiver representations. We find natural Hermitian metrics on the universal bundles over the moduli whose expressions are independent of dimension vector, and show that their Ricci curvatures give a Kähler metric on the moduli. Moreover, we use toric moment maps to construct activation functions and prove the universal approximation theorem for the softmax function (also known as Boltzmann distribution) using toric geometry of the complex projective space.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. M. Abouzaid, Homogeneous coordinate rings and mirror symmetry for toric varieties, Geom. Topol. 10 (2006), 1097–1157.

    Article  MathSciNet  MATH  Google Scholar 

  2. M. Abreu, Kähler geometry of toric varieties and extremal metrics, Internat. J. Math. 9 (1998), no. 6, 641–651.

    Article  MathSciNet  MATH  Google Scholar 

  3. M. A. Armenta and P.-M. Jodoin, The representation theory of neural networks, Mathematics 9.24 (2021), 3216.

    Article  Google Scholar 

  4. M.C.N. Cheng, V. Anagiannis, M. Weiler, P. de Haan, T.S. Cohen, and M. Welling, Covariance in physics and convolutional neural networks. Submitted, arXiv:1906.02481, 2019.

  5. W. Crawley-Boevey, Normality of Marsden-Weinstein reductions for representations of quivers, Math. Ann. 325 (2003), no. 1, 55–79.

    Article  MathSciNet  MATH  Google Scholar 

  6. X. Chen, S. Donaldson, and S. Sun, Kähler-Einstein metrics on Fano manifolds. I: Approximation of metrics with cone singularities, J. Amer. Math. Soc. 28 (2015), no. 1, 183–197.

  7. X. Chen, S. Donaldson, and S. Sun, Kähler-Einstein metrics on Fano manifolds. II: Limits with cone angle less than \(2\pi \), J. Amer. Math. Soc. 28 (2015), no. 1, 199–234.

  8. X. Chen, S. Donaldson, and S. Sun, Kähler-Einstein metrics on Fano manifolds. III: Limits as cone angle approaches \(2\pi \) and completion of the main proof, J. Amer. Math. Soc. 28 (2015), no. 1, 235–278.

  9. T.S. Cohen, M. Geiger, J. Koehler, and M. Welling, Spherical cnns, ICLR. arXiv:1801.10130

  10. T.S. Cohen, M. Geiger, and M. Weiler, A general theory of equivariant cnns on homogeneous spaces, NeurlPS. arXiv:1811.02017.

  11. K. Chan, S.-C. Lau, and N.C. Leung, SYZ mirror symmetry for toric Calabi-Yau manifolds, J. Differential Geom. 90 (2012), no. 2, 177–250.

    Article  MathSciNet  MATH  Google Scholar 

  12. X. Chen, S. Sun, and B. Wang, Kähler-Ricci flow, Kähler-Einstein metric, and K-stability, Geom. Topol. 22 (2018), no. 6, 3145–3173.

    Article  MathSciNet  MATH  Google Scholar 

  13. T.S. Cohen and M. Welling, Group equivariant convolutional networks, Proceedings of The 33rd International Conference on Machine Learning, vol. 48, 2016, pp. 2990–2999.

  14. T.S. Cohen, M. Weiler, B. Kicanaoglu, and M. Welling, Gauge equivariant convolutional networks and the icosahedral cnn, Proceedings of the ICML. arXiv:1902.04615

  15. G. Cybenko, Approximation by superpositions of a sigmoidal function, Math. Control Signals Systems 2 (1989), no. 4, 303–314.

    Article  MathSciNet  MATH  Google Scholar 

  16. I. Chami, Z. Ying, C. Ré, and J. Leskovec, Hyperbolic graph convolutional neural networks, Advances in neural information processing systems. arXiv:1910.12933

  17. P. de Haan, T. Cohen, and M. Welling, Natural graph networks. Submitted, arXiv:2007.08349, 2020.

  18. S.K. Donaldson, Anti self-dual Yang-Mills connections over complex algebraic surfaces and stable vector bundles, Proc. London Math. Soc. (3) 50 (1985), no. 1, 1–26.

  19. S.K. Donaldson, Symmetric spaces, Kähler geometry and Hamiltonian dynamics, Northern California Symplectic Geometry Seminar, Amer. Math. Soc. Transl. Ser. 2, vol. 196, Amer. Math. Soc., Providence, RI, 1999, pp. 13–33.

  20. S.K. Donaldson, Stability, birational transformations and the Kahler-Einstein problem, Surveys in differential geometry. Vol. XVII, Surv. Differ. Geom., vol. 17, Int. Press, Boston, MA, 2012, pp. 203–228.

  21. Y. Dauphin, R. Pascanu, C. Gulcehre, K. Cho, S. Ganguli, and Y. Bengio, Identifying and attacking the saddle point problem in high-dimensional non-convex optimization. Submited, arXiv:1406.2572, 2014.

  22. J. Engel and M. Reineke, Smooth models of quiver moduli, Math. Z. 262 (2009), no. 4, 817–848.

    Article  MathSciNet  MATH  Google Scholar 

  23. S. Fedotov, Framed moduli and Grassmannians of submodules, Trans. Amer. Math. Soc. 365 (2013), no. 8, 4153–4179.

    Article  MathSciNet  MATH  Google Scholar 

  24. B. Fang, C.-C. M. Liu, D. Treumann, and E. Zaslow, T-duality and homological mirror symmetry for toric varieties, Adv. Math. 229 (2012), no. 3, 1875–1911.

    Article  MathSciNet  MATH  Google Scholar 

  25. B.  Fong and D. I. Spivak, An invitation to applied category theory: Seven sketches in compositionality, Cambridge University Press, Cambridge, 2019.

    Book  MATH  Google Scholar 

  26. W. Fulton, Introduction to toric varieties, Annals of Mathematics Studies, vol. 131, Princeton University Press, Princeton, NJ, 1993.

    Book  Google Scholar 

  27. O. Ganea, G. Becigneul, and T. Hofmann, Hyperbolic neural networks, Advances in Neural Information Processing Systems (S. Bengio, H. Wallach, H. Larochelle, K. Grauman, N. Cesa-Bianchi, and R. Garnett, eds.), vol. 31, Curran Associates, Inc., 2018, pp. 5345–5355.

  28. M. Goyal, R. Goyal, and B. Lall, Learning activation functions: A new paradigm for understanding neural networks. Submitted, arXiv:1906.09529, 2019.

  29. V. Guillemin, Kaehler structures on toric varieties, J. Differential Geom. 40 (1994), no. 2, 285–309.

    Article  MathSciNet  MATH  Google Scholar 

  30. I. Ganev and R. Walters, The QR decomposition for radial neural networks. Submitted, arXiv:2107.02550, 2016.

  31. R.S. Hamilton, Three-manifolds with positive Ricci curvature, J. Differential Geometry 17 (1982), no. 2, 255–306.

    Article  MathSciNet  MATH  Google Scholar 

  32. H. Hansol, Y. Kim, and S.-C. Lau, Immersed two-spheres and SYZ with application to Grassmannians. Submitted, arXiv:1805.11738, 2018.

  33. B. Hanin and M. Sellke, Approximating continuous functions by relu nets of minimal width. Submitted, arXiv:1710.11278, 2017.

  34. K. Hashimoto, S. Sugishita, A. Tanaka, and A. Tomiya, Deep learning and holographic QCD, Phys. Rev. D 98 (2018), no. 10, 106014, 15.

  35. K. Hashimoto, S. Sugishita, A. Tanaka, and A. Tomiya, Deep learning and the ads/cft correspondence, Physical Review D 98 (2018), no. 4. https://doi.org/10.1103/PhysRevD.98.046019

  36. Y.-H. He and S.-T. Yau, Graph laplacians, riemannian manifolds and their machine-learning. Submitted, arXiv:2006.16619, 2020.

  37. G. Jeffreys and S.-C. Lau, Noncommutative geometry of computational models and uniformization for framed quiver varieties. Submitted, arXiv:2201.05900, 2022.

  38. A.D. King, Moduli of representations of finite-dimensional algebras, Quart. J. Math. Oxford Ser. (2) 45 (1994), no. 180, 515–530.

  39. H. Lin and S. Jegelka, Resnet with one-neuron hidden layers is a universal approximator, Advances in Neural Information Processing Systems (S. Bengio, H. Wallach, H. Larochelle, K. Grauman, N. Cesa-Bianchi, and R. Garnett, eds.), vol. 31, Curran Associates, Inc., 2018, pp. 6169–6178.

  40. M. Leshno, V.Ya. Lin, A. Pinkus, and S. Schocken, Multilayer feedforward networks with a nonpolynomial activation function can approximate any function, Neural Networks 6 (1993), no. 6, 861 – 867.

    Article  Google Scholar 

  41. Z. Lu, H. Pu, F. Wang, Z. Hu, and L. Wang, The expressive power of neural networks: A view from the width. Submitted, arXiv:1709.02540, 2017.

  42. S. Martin, Symplectic quotients by a nonabelian group and by its maximal torus. Submitted, arXiv:math/0001002, 2000.

  43. H. Mhaskar, Q. Liao, and T. Poggio, Learning functions: When is deep better than shallow. Submitted, arXiv:1603.00988, 2016.

  44. H. N. Mhaskar and C.A. Micchelli, Approximation by superposition of sigmoidal and radial basis functions, Adv. in Appl. Math. 13 (1992), no. 3, 350–373.

    Article  MathSciNet  MATH  Google Scholar 

  45. H. N. Mhaskar and T. Poggio, Deep vs. shallow networks: an approximation theory perspective, Anal. Appl. (Singap.) 14 (2016), no. 6, 829–848.

  46. H. Nakajima, Instantons on ALE spaces, quiver varieties, and Kac-Moody algebras, Duke Math. J. 76 (1994), no. 2, 365–416.

    Article  MathSciNet  MATH  Google Scholar 

  47. H. Nakajima, Varieties associated with quivers, Representation theory of algebras and related topics (Mexico City, 1994), CMS Conf. Proc., vol. 19, Amer. Math. Soc., Providence, RI, 1996, pp. 139–157.

  48. H. Nakajima, Quiver varieties and finite-dimensional representations of quantum affine algebras, J. Amer. Math. Soc. 14 (2001), no. 1, 145–238.

    Article  MathSciNet  MATH  Google Scholar 

  49. T. Nishinou, Y. Nohara, and K. Ueda, Toric degenerations of Gelfand-Cetlin systems and potential functions, Adv. Math. 224 (2010), no. 2, 648–706.

    Article  MathSciNet  MATH  Google Scholar 

  50. R. Pascanu, Y.N. Dauphin, S. Ganguli, and Y. Bengio, On the saddle point problem for non-convex optimization. Submitted, arXiv:1405.4604, 2014.

  51. G. Perelman, The entropy formula for the ricci flow and its geometric applications. Submitted, arXiv:math/0211159, 2002.

  52. G. Perelman, Ricci flow with surgery on three-manifolds. Submitted, arXiv:math/0303109, 2003.

  53. P.P. Petrushev, Approximation by ridge functions and neural networks, SIAM J. Math. Anal. 30 (1999), no. 1, 155–189.

    Article  MathSciNet  MATH  Google Scholar 

  54. A. Pinkus, Approximation theory of the MLP model in neural networks, Acta numerica, 1999, Acta Numer., vol. 8, Cambridge Univ. Press, Cambridge, 1999, pp. 143–195.

  55. M. Reineke, Framed quiver moduli, cohomology, and quantum groups, J. Algebra 320 (2008), no. 1, 94–115.

    Article  MathSciNet  MATH  Google Scholar 

  56. S. Semmes, Complex Monge-Ampère and symplectic manifolds, Amer. J. Math. 114 (1992), no. 3, 495–550.

    Article  MathSciNet  MATH  Google Scholar 

  57. M. Telgarsky, Benefits of depth in neural networks, 29th Annual Conference on Learning Theory (2016), 1517–1539.

  58. G. Tian, Kähler-Einstein metrics with positive scalar curvature, Invent. Math. 130 (1997), no. 1, 1–37.

    Article  MathSciNet  MATH  Google Scholar 

  59. K. Uhlenbeck and S.-T. Yau, On the existence of Hermitian-Yang-Mills connections in stable vector bundles, Comm. Pure Appl. Math. 39 (1986), no. S, suppl., S257–S293.

  60. S.-T. Yau, Review of Kähler-Einstein metrics in algebraic geometry, Israel Math. Conference Proceedings, Bar Ilan Univ., 1996, pp. 433–443.

  61. L. Zhang, G. Naitzat, and L.-H. Lim, Tropical geometry of deep neural networks, International conference on machine learning. arXiv:1805.07091

Download references

Acknowledgements

We are grateful to Marco Antonio Armenta for informing us about the work [3] and the further useful discussions. We express our gratitude to Shing-Tung Yau for his generous encouragement. The work of S.C. Lau in this paper is partially supported by the Simons collaboration grant.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to George Jeffreys.

Additional information

Communicated by Joseph M. Landsberg.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jeffreys, G., Lau, SC. Kähler Geometry of Framed Quiver Moduli and Machine Learning. Found Comput Math 23, 1899–1957 (2023). https://doi.org/10.1007/s10208-022-09587-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10208-022-09587-3

Keywords

Mathematics Subject Classification

Navigation