Skip to main content
Log in

Finite element analysis of the panel flutter of stiffened shallow shells

  • Original Article
  • Published:
Continuum Mechanics and Thermodynamics Aims and scope Submit manuscript

Abstract

The aeroelastic stability of flat plates and shallow cylindrical shells stiffened with stringers is investigated. In the case of a curved panel, the supersonic gas flow is parallel to its generatrix. A mathematical formulation of the dynamics problem is based on the variational principle of virtual displacements taking into account the work done by the inertial forces and aerodynamic pressure of the external supersonic gas flow determined according to the quasi-static aerodynamic theory. The solution is found by the finite element method in a three-dimensional formulation using the mode-superposition technique. The estimation of the shell stability is based on the analysis of complex eigenvalues of the system of equations calculated under gradually increasing aerodynamic pressure. The validity of the obtained results is confirmed by comparing them with the known solutions to a number of relevant problems. Numerical examples are used to analyze in detail the influence of the curvature ratio, the boundary conditions specified at the edges of the shallow shell, and the number of stringers on the boundary of stability loss. It is demonstrated that with an optimal arrangement of reinforcing elements, it is possible to achieve a significant increase in the critical parameters of the flutter.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Vol’mir, A.S.: Stability of Deformable Bodies. Fizmatgiz, Moscow (1967) (in Russian)

  2. Dowell, E.H.: Panel flutter—A review of the aeroelastic stability of plates and shells. AIAA J. 8, 385–399 (1970). https://doi.org/10.2514/3.5680

    Article  ADS  Google Scholar 

  3. Dowell, E.H.: Aeroelasticity of Plates and Shells, Mechanics: Dynamical Systems. Springer, Netherlands (1975)

    MATH  Google Scholar 

  4. Novichkov, Yu. N.: Flutter of plates and shells. In: Advances in Science and Technology. Mechanics of Deformable Solids, vol. 11, pp. 67–122. VINITI, Moscow (1978). (in Russian)

  5. Bismarck-Nasr, M.N.: Finite element analysis of aeroelasticity of plates and shells. Appl. Mech. Rev. 45, 461–482 (1992). https://doi.org/10.1115/1.3119783

    Article  ADS  Google Scholar 

  6. Bismarck-Nasr, M.N.: Finite elements in aeroelasticity of plates and shells. Appl. Mech. Rev. 49(10S), S17–S24 (1996). https://doi.org/10.1115/1.3101970

    Article  ADS  Google Scholar 

  7. Mei, C., Abel-Motagaly, K., Chen, R.: Review of nonlinear panel flutter at supersonic and hypersonic speeds. Appl. Mech. Rev. 52, 321–332 (1999). https://doi.org/10.1115/1.3098919

    Article  ADS  Google Scholar 

  8. Marzocca, P.S., Fazelzadeh, A., Hosseini, M.: A review of nonlinear aero-thermo-elasticity of functionally graded panels. J. Therm. Stresses. 34(5–6), 536–568 (2011). https://doi.org/10.1080/01495739.2011.564016

    Article  MATH  Google Scholar 

  9. Algazin, S.D., Kijko, I.A.: Aeroelastic Vibrations and Stability of Plates and Shells. Studies in Mathematical Physics, vol. 25. Walter de Gruyter GmbH, Berlin (2015)

  10. Stepanov, R.D.: On the flutter of cylindrical shells and panels moving in a flow of gas. Prikl. Mat. Mekh. 21, 644–657 (1957) (in Russian)

  11. Voss, H.M.: The effect of an external supersonic flow on the vibration characteristics of thin cylindrical shells. J. Aerosp. Sci. 3, 945–956 (1961). https://doi.org/10.2514/8.9264

  12. Ogibalov, P.M.: Problems of the Dynamics and Stability of Shells. Moscow University Press, Moscow (1963) (in Russian)

  13. Matsuzaki, Y.: Natural vibration and flutter of cylindrically curved panels. AIAA J. 11, 771–772 (1973). https://doi.org/10.2514/3.6832

    Article  ADS  Google Scholar 

  14. Srinivasan, R.S., Babu, B.J.C.: Flutter of clamped circular cylindrical symmetrically layered panels. J. Sound Vib. 142, 532–535 (1990). https://doi.org/10.1016/0022-460X(90)90668-P

    Article  ADS  Google Scholar 

  15. Birman, V., Bert, C.W., Elishakoff, I.: Effect of aerodynamic heating on deformation of composite cylindrical panels in a gas flow. Compos. Struct. 15(3), 259–273 (1990). https://doi.org/10.1016/0263-8223(90)90034-C

    Article  Google Scholar 

  16. Pidaparti, R.M.V.: Flutter analysis of cantilevered curved composite panels. Compos. Struct. 25(1–4), 89–93 (1993). https://doi.org/10.1016/0263-8223(93)90154-I

    Article  ADS  Google Scholar 

  17. Pidaparti, R.M.V., Yang, H.T.Y.: Supersonic flutter analysis of composite plates and shells. AIAA J. 31(6), 1109–1117 (1993). https://doi.org/10.2514/3.11735

    Article  ADS  Google Scholar 

  18. Bismarck-Nasr, M.N.: Supersonic panel flutter analysis of shallow shells. AIAA J. 31(7), 1349–1351 (1993). https://doi.org/10.2514/3.49073

    Article  ADS  MATH  Google Scholar 

  19. Bismarck-Nasr, M.N.: Analysis of cylindrically curved panels based on a two field variable variational principle. Appl. Mech. Rev. 46(11), S71–S78 (1993). https://doi.org/10.1115/1.3122660

    Article  ADS  Google Scholar 

  20. Ganapathi, M., Varadan, T.: Supersonic flutter of laminated curved panels. Defen. Sci. J. 45(2) 147–159 (1995). https://doi.org/10.14429/dsj.45.4114

  21. Il’yushin, A.A., Kiiko, I.A.: A new formulation of the problem of the flutter of a hollow shell. J. Appl. Math. Mech. 58(3), 545–549 (1994). https://doi.org/10.1016/0021-8928(94)90104-X

    Article  MathSciNet  Google Scholar 

  22. Kiiko, I.A.: Formulation of the problem of the flutter of a shell of revolution and a shallow shell in a high-velocity supersonic gas flow. J. Appl. Math. Mech. 63(2), 305–312 (1999). https://doi.org/10.1016/S0021-8928(99)00040-4

    Article  MathSciNet  Google Scholar 

  23. Algazin, S.D., Kiyko, I.A.: Numerical analysis of the flutter of a shallow shell. J. Appl. Mech. Tech. Phys. 40, 1082–1087 (1999). https://doi.org/10.1007/BF02469177

    Article  ADS  Google Scholar 

  24. Pany, C., Parthan, S.: Flutter analysis of periodically supported curved panels. J. Sound Vib. 267(2), 267–278 (2003). https://doi.org/10.1016/S0022-460X(02)01493-1

    Article  ADS  Google Scholar 

  25. Shin, W.-H., Oh, I.-K., Han, J.-H., Lee, I.: Aeroelastic characteristics of cylindrical hybrid composite panels with viscoelastic damping treatments. J. Sound Vib. 296(1–2), 99–116 (2006). https://doi.org/10.1016/j.jsv.2006.01.06

    Article  ADS  Google Scholar 

  26. Singha, M.K., Mandal, M.: Supersonic flutter characteristics of composite cylindrical panels. Compos. Struct. 82(2), 295–301 (2008). https://doi.org/10.1016/j.compstruct.2007.01.007

    Article  Google Scholar 

  27. Muc, A., Flis, J.: Free vibrations and supersonic flutter of multilayered laminated cylindrical panels. Compos. Struct. 246, 112400 (2020). https://doi.org/10.1016/j.compstruct.2020.112400

    Article  Google Scholar 

  28. Bolotin, V.V.: Nonlinear flutter of plates and shells. Inzhenernyi Sbornik 28, 55–75 (1960) (in Russian)

  29. Baghdasaryan, G.Y.: On stability of orthotropic shells in supersonic gas flow. Izv. AN USSR. OTN. Mech. Eng. 4, 92–98 (1961) (in Russian)

  30. Dowel, E.H.: Nonlinear flutter of curved plates. AIAA J. 7(3), 424–431 (1969). https://doi.org/10.2514/3.5124

    Article  ADS  Google Scholar 

  31. Dowel, E.H.: Nonlinear flutter of curved plates. II. AIAA J. 8(2), 259–261 (1970). https://doi.org/10.2514/3.5653

    Article  ADS  Google Scholar 

  32. Vol’mir, A.S., Medvedeva, S.V.: Investigation of cylindrical panel flutter in a supersonic gas flow. Dokl. Akad. Nauk SSSR 207(4), 811–813 (1972) (in Russian)

  33. Khudayarov, B.A., Bandurin, N.G.: Nonlinear flutter of viscoelastic orthotropic cylindrical panels. Matem. Mod. 17(10), 79–86 (2005) (in Russian)

  34. Khudayarov, B.A., Bandurin, N.G.: Numerical investigation of nonlinear vibrations of viscoelastic plates and cylindrical panels in a gas flow. J. Appl. Mech. Tech. Phys. 48, 279–284 (2007). https://doi.org/10.1007/s10808-007-0036-5

    Article  ADS  MATH  Google Scholar 

  35. Oh, I.-K., Kim, D.-H.: Vibration characteristics and supersonic flutter of cylindrical composite panels with large thermoelastic deflections. Compos. Struct. 90(2), 208–216 (2009). https://doi.org/10.1016/j.compstruct.2009.03.012

    Article  Google Scholar 

  36. Cabral, M.V., Marques, F.D., Ferreira, A.J.M.: Nonlinear supersonic flutter of multibay cross-stream shallow shells. Int. J. Non-Linear Mech. 133, 103730 (2021). https://doi.org/10.1016/j.ijnonlinmec.2021.103730

    Article  ADS  Google Scholar 

  37. Fung, Y.C.: The static stability of a two-dimensional curved panel in a supersonic flow, with an application to panel flutter. J. Aeronaut. Sci. 21(8), 556–565 (1954). https://doi.org/10.2514/8.3122

    Article  MATH  Google Scholar 

  38. Fung, Y.C.: On two-dimensional panel flutter. J. Aerosp. Sci. 25(3), 145–160 (1958). https://doi.org/10.2514/8.7557

    Article  MATH  Google Scholar 

  39. Resende, H.: Temperature and initial curvature effects in low-density panel flutter. In: Proc. A/AA Dynamics Specialist Conference, pp. 467–477 (1992). https://doi.org/10.2514/6.1992-2128

  40. Ghoman, S., Mei, C., Azzouz, M.: Frequency domain method for flutter of curved panels under yawed supersonic flow at elevated temperatures. In: Proc. 49th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics and Materials Conference, AIAA 2008-2312 (2008). https://doi.org/10.2514/6.2008-2312

  41. Abbas, L.K., Rui, X., Marzocca, P., Abdalla, M., De Breuker, R.: A parametric study on supersonic/hypersonic flutter behavior of aero-thermo-elastic geometrically imperfect curved skin panel. Acta Mech. 222(1–2), 41–57 (2011). https://doi.org/10.1007/s00707-011-0525-8

    Article  MATH  Google Scholar 

  42. Yang, Z., Zhou, J., Gu, Y.: Integrated analysis on static/dynamic aeroelasticity of curved panels based on a modified local piston theory. J. Sound Vib. 333(22), 5885–5897 (2014). https://doi.org/10.1016/j.jsv.2014.06.035

    Article  ADS  Google Scholar 

  43. Amirzadegan, S., Dowell, E.H.: Correlation of experimental and computational results for flutter of streamwise curved plate. AIAA J. 57(8), 3556–3561 (2019). https://doi.org/10.2514/1.j057909

    Article  ADS  Google Scholar 

  44. Bismarck-Nasr, M.N.: Aeroelasticity of laminated fiber-reinforced doubly curved shallow shells. AIAA J. 36(4), 661–663 (1998). https://doi.org/10.2514/2.422

    Article  ADS  Google Scholar 

  45. Algazin, S.D., Kiiko, I.A.: Numerical investigation of the flutter of spherical shallow shell. Matem. Mod. 11(12), 45–50 (1999) (in Russian)

  46. Bismarck-Nasr, M.N., Bones, C.A.: Damping effects in nonlinear panel flutter. AIAA J. 38(4), 711–713 (2000). https://doi.org/10.2514/2.1014

    Article  ADS  Google Scholar 

  47. Li, J., Narita, Y.: Multi-objective design for aeroelastic flutter of laminated shallow shells under variable flow angles. Compos. Struct. 111(1), 530–539 (2014). https://doi.org/10.1016/j.compstruct.2014.01.026

    Article  Google Scholar 

  48. Sankar, A., Natarajan, S., Ben Zineb, T., Ganapathi, M.: Investigation of supersonic flutter of thick doubly curved sandwich panels with CNT reinforced facesheets using higher-order structural theory. Compos. Struct. 127, 340–355 (2015). https://doi.org/10.1016/j.compstruct.2015.02.047

    Article  Google Scholar 

  49. Livani, M., Fard, K.M., Shokrollahi, S.: Higher order flutter analysis of doubly curved sandwich panels with variable thickness under aerothermoelastic loading. Struct. Eng. Mech. 60(1), 1–19 (2016). https://doi.org/10.12989/sem.2016.60.1.001

  50. Yazdi, A.A.: Supersonic nonlinear flutter of cross-ply laminated shallow shells. Proc. Inst. Mech. Eng. Part G J. Aerosp. Eng. 233(13), 4696–4703 (2019). https://doi.org/10.1177/0954410019827461

  51. Yazdi, A.A.: Flutter of geometrical imperfect functionally graded carbon nanotubes doubly curved shells. Thin-Walled Struct. 164, 107798 (2021). https://doi.org/10.1016/j.tws.2021.107798

    Article  Google Scholar 

  52. Lee, I., Roh, J.-H., Oh, I.-K.: Aerothermoelastic phenomena of aerospace and composite structures. J. Therm. Stresses 26(6), 525–546 (2003). https://doi.org/10.1080/713855957

    Article  Google Scholar 

  53. Oh, I.K., Lee, I.: Supersonic flutter suppression of piezolaminated cylindrical panels based on multifield layerwise theory. J. Sound Vib. 291(3–5), 1186–1201 (2006). https://doi.org/10.1016/j.jsv.2005.07.033

    Article  ADS  Google Scholar 

  54. Almeida, A., Donadon, M.V., de Faria, A.R., de Almeida, S.F.M.: The effect of piezoelectrically induced stress stiffening on the aeroelastic stability of curved composite panels. Compos. Struct. 94(12), 3601–3611 (2012). https://doi.org/10.1016/j.compstruct.2012.06.008

    Article  Google Scholar 

  55. Hasheminejad, S.M., Motaaleghi, M.A.: Aeroelastic analysis and active flutter suppression of an electro-rheological sandwich cylindrical panel under yawed supersonic flow. Aerosp. Sci. Technol. 42, 118–127 (2015). https://doi.org/10.1016/j.ast.2015.01.004

    Article  Google Scholar 

  56. Akbari, H., Azadi, M., Fahham, H.: Flutter prediction of cylindrical sandwich panels with saturated porous core under supersonic yawed flow. Proc. Inst. Mech. Eng. Part C J. Mech. Eng. Sci. 235(16), 2968–2984 (2021). https://doi.org/10.1177/0954406220960786

  57. Zhou, X., Wang, Y., Zhang, W.: Vibration and flutter characteristics of GPL-reinforced functionally graded porous cylindrical panels subjected to supersonic flow. Acta Astronaut. 183, 89–100 (2021). https://doi.org/10.1016/j.actaastro.2021.03.003

    Article  ADS  Google Scholar 

  58. Hao, Y.X., Zhang, W., Li, S.B., Zhang, J.H.: Nonlinear vibrations of FGM cylindrical panel with simply supported edges in air flow. Int. J. Aerosp. Eng. 2015, 246352 (2015). https://doi.org/10.1155/2015/246352

    Article  Google Scholar 

  59. Quan, T.Q., Bich, D.H., Duc, N.D.: Nonlinear analysis on flutter of functional graded cylindrical panels on elastic foundations using the Ilyushin nonlinear supersonic aerodynamic theory. VNU J. Sci. Math.–Phys. 31(2), 1–14 (2015)

  60. Fazilati, J., Khalafi, V., Shahverdi, H.: Three-dimensional aero-thermo-elasticity analysis of functionally graded cylindrical shell panels. Proc. Inst. Mech. Eng. Part G J. Aerosp. Eng. 233(5), 1715–1727 (2019). https://doi.org/10.1177/0954410018763861

  61. Liao, C.-L., Sun, Y.-W.: Flutter analysis of stiffened laminated composite plates and shells in supersonic flow. AIAA J. 31(10), 1897–1905 (1993). https://doi.org/10.2514/3.11865

    Article  ADS  MATH  Google Scholar 

  62. Castro, S.G.P., Guimarães, T.A.M., Rade, D.A., Donadon, M.V.: Flutter of stiffened composite panels considering the stiffener’s base as a structural element. Compos. Struct. 140, 36–43 (2016). https://doi.org/10.1016/j.compstruct.2015.12.056

    Article  Google Scholar 

  63. de Matos Jr, O.D., Donadon, M.V., Castro, S.G.P.: Aeroelastic behavior of stiffened composite laminated panel with embedded SMA wire using the hierarchical Rayleigh-Ritz method. Compos. Struct. 181, 26–45 (2017). https://doi.org/10.1016/j.compstruct.2017.08.060

  64. Belostochnyi, G.N., Myltcina, O.A.: Dynamic stability of heated geometrically irregular cylindrical shell in supersonic gas flow. Vestn. Samar. Gos. Tekhn. Univ. Ser. Fiz.-Mat. Nauki 22(4), 750–761 (2018). https://doi.org/10.14498/vsgtu1653. (in Russian)

  65. Lighthill, M.J.: Oscillating airfoils at high Mach numbers. J. Aero Sci. 20(6), 402–406 (1953). https://doi.org/10.2514/8.2657

    Article  MathSciNet  MATH  Google Scholar 

  66. Il’yushin, A.A.: Law of plane sections in the aerodynamics of high supersonic velocities. Prikl. Mat. Mekh. 20, 733–755 (1956) (in Russian)

  67. Ashley, H., Zartarian, G.: Piston theory—a new aerodynamic tool for the aeroelastician. J. Aero Sci. 23(12), 1109–1118 (1956). https://doi.org/10.2514/8.3740

    Article  MathSciNet  Google Scholar 

  68. Alder, M.: Development and validation of a fluid-structure solver for transonic panel flutter. AIAA J. 53(12), 3509–3521 (2015). https://doi.org/10.2514/1.J054013

    Article  ADS  Google Scholar 

  69. Ghoman, S.S., Azzouz, M.S.: Supersonic aerothermoelastic nonlinear flutter study of curved panels: Frequency domain. J. Aircraft 49(4), 1075–1090 (2012). https://doi.org/10.2514/1.c031575

    Article  Google Scholar 

  70. Alessandroni, S., Andreaus, U., Dell’Isola, F., Porfiri, M.: Piezo-electromechanical (PEM) Kirchhoff-Love plates. Eur. J. Mech. A-Solids 23(4), 689–702 (2004). https://doi.org/10.1016/j.euromechsol.2004.03.003

    Article  MATH  Google Scholar 

  71. Abramovich, H.: Intelligent Materials and Structures. De Gruyter, Berlin (2016)

    Book  Google Scholar 

  72. Zhang, J., Chen, S., Zheng, W.: Dynamic buckling analysis of functionally graded material cylindrical shells under thermal shock. Continuum Mech. Thermodyn. 32(4), 1095–1108 (2020). https://doi.org/10.1007/s00161-019-00812-z

    Article  ADS  MathSciNet  Google Scholar 

  73. Huang, H., Rao, D.: Thermal buckling of functionally graded cylindrical shells with temperature-dependent elastoplastic properties. Continuum Mech. Thermodyn. 32(5), 1403–1415 (2020). https://doi.org/10.1007/s00161-019-00854-3

    Article  ADS  MathSciNet  Google Scholar 

  74. Iurlov, M.A., Kamenskikh, A.O., Lekomtsev, S.V., Matveenko, V.P.: Passive suppression of resonance vibrations of a plate and parallel plates assembly, interacting with a fluid. Int. J. Struct. Stab. Dyn. 22(9), 2250101 (2022). https://doi.org/10.1142/S0219455422501012

    Article  Google Scholar 

  75. Zienkiewicz, O.C., Taylor, R.L.: The Finite Element Method, vol. 2, 5th edn. Butterworth-Heinemann, Oxford (2000)

  76. Tisseur, F., Meerbergen, K.: The quadratic eigenvalue problem. SIAM Rev. 43(2), 235–286 (1988). https://doi.org/10.1137/S0036144500381988

    Article  ADS  MathSciNet  MATH  Google Scholar 

  77. Lehoucq, R.B., Sorensen, D.C.: Deflation techniques for an implicitly restarted Arnoldi iteration. SIAM J. Matrix Anal. Appl. 17(4), 789–821 (1996). https://doi.org/10.1137/S0895479895281484

    Article  MathSciNet  MATH  Google Scholar 

  78. Olson, M.D.: Some flutter solutions using finite elements. AIAA J. 8(4), 747–752 (1970). https://doi.org/10.2514/3.5751

    Article  ADS  Google Scholar 

  79. Han, A.D., Yang, T.Y.: Nonlinear panel flutter using high-order triangular finite elements. AIAA J. 10, 1453–1461 (1983). https://doi.org/10.2514/3.8267

    Article  MATH  Google Scholar 

  80. Prakash, T., Ganapathi, M.: Supersonic flutter characteristics of functionally graded flat panels including thermal effects. Compos. Struct. 72(1), 10–18 (2006). https://doi.org/10.1016/j.compstruct.2004.10.007

    Article  Google Scholar 

  81. Bochkarev, S.A., Lekomtsev, S.V.: Stability analysis of rectangular parallel plates interacting with internal fluid flow and external supersonic gas flow. J. Fluids Struct. 78, 331–342 (2018). https://doi.org/10.1016/j.jfluidstructs.2018.01.009

    Article  ADS  Google Scholar 

  82. Thomas, J., Abbas, B.H.A.: Vibration characteristics and dynamic stability of stiffened plates. In: Proc. 24th Structures, Structural Dynamics and Materials Conference, AIAA 1983-890, pp. 277–285 (1983). https://doi.org/10.2514/6.1983-890

  83. Patel, S.N., Datta, P.K., Sheikh, A.H.: Buckling and dynamic instability analysis of stiffened shell panels. Thin-Walled Struct. 44(3), 321–333 (2006). https://doi.org/10.1016/j.tws.2006.03.004

    Article  Google Scholar 

  84. Ahmad, S.: Analysis of thick and thin shell structures by curved finite elements. Int. J. Num. Meth. Eng. 2(3), 419–451 (1970). https://doi.org/10.1002/nme.1620020310

    Article  Google Scholar 

Download references

Acknowledgements

The paper was prepared in the framework of the program for the creation and development of the world-class scientific center “Supersonic” for 2020–2025 with the financial support of the Ministry of Education and Science of the Russian Federation (agreement no. 075-15-2022-329 of 21 April 2022).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sergey A. Bochkarev.

Ethics declarations

Conflict of interest

The authors have no competing interests to declare that are relevant to the content of this article.

Additional information

Communicated by Andreas Öchsner.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bochkarev, S.A., Lekomtsev, S.V. & Matveenko, V.P. Finite element analysis of the panel flutter of stiffened shallow shells. Continuum Mech. Thermodyn. 35, 1275–1290 (2023). https://doi.org/10.1007/s00161-022-01123-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00161-022-01123-6

Keywords

Navigation