Skip to main content
Log in

How to take advantage of easily available biomarkers in patients with IgA nephropathy: IgA and C3 in serum and kidney biopsies

  • Educational Review
  • Published:
Pediatric Nephrology Aims and scope Submit manuscript

Abstract

IgA nephropathy (IgAN) is the most common glomerulonephritis worldwide. It is diagnosed based on clinical and histological features including predominant IgA deposits in kidney biopsy. The multi-hit theory, based on the production of GDIgA1 and anti-GDIgA1 antibodies, and complement activation via alternative and lectin pathways and also a genetic tendency are crucial in the pathogenesis of IgAN. The aim of the present review is to summarize the utility of routine diagnostic tests in IgA nephropathy, such as IgA and C3 in serum and kidney biopsy specimens, for predicting the disease progression. The paper also contains data on new markers used in the diagnosis and prognosis of IgA nephropathy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Berthoux FC, Mohey H, Afiani A (2008) Natural history of primary IgA nephropathy. Semin Nephrol 28:4–9. https://doi.org/10.1016/j.semnephrol.2007.10.001

    Article  PubMed  Google Scholar 

  2. Hastings MC, Bursac Z, Julian BA, Villa Baca E, Featherston J, Woodford SY, Bailey L, Wyatt RJ (2018) Life expectancy for patients from the Southeastern United States with IgA nephropathy. Kidney Int Rep 3:99–104. https://doi.org/10.1016/j.ekir.2017.08.008

  3. Rizk DV, Maillard N, Julian BA, Knoppova B, Green TJ, Novak J, Wyatt RJ (2019) The emerging role of complement proteins as a target for therapy of IgA nephropathy. Front Immunol 10:504. https://doi.org/10.3389/fimmu.2019.00504

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Caliskan Y, Kiryluk K (2014) Novel biomarkers in glomerular disease. Adv Chronic Kidney Dis 21:205–216

    Article  PubMed  PubMed Central  Google Scholar 

  5. Tan M, Li W, Zou G, Zhang C, Fang J (2015) Clinicopathological features and outcomes of IgA nephropathy with hematuria and/or minimal proteinuria. Kidney Blood Press Res 40:200–206

    Article  CAS  PubMed  Google Scholar 

  6. Caliskan Y, Ozluk Y, Celik D, Oztop N, Aksoy A, Ucar AS, Yazici H, Kilicaslan I, Sever MS (2016) The clinical significance of uric acid and complement activation in the progression of IgA nephropathy. Kidney Blood Press Res 41:148–157. https://doi.org/10.1159/000443415

    Article  CAS  PubMed  Google Scholar 

  7. Barbour SJ, Coppo R, Er L, Russo ML, Liu ZH, Ding J, Katafuchi R, Yoshikawa N, Xu H, Kagami S, Yuzawa Y, Emma F, Cambier A, Peruzzi L, Wyatt RJ, Cattran DC, International IgA Nephropathy Network (2021) Updating the International IgA Nephropathy Prediction Tool for use in children. Kidney Int 99:1439–1450. https://doi.org/10.1016/j.kint.2020.10.033

    Article  CAS  PubMed  Google Scholar 

  8. World Health Organization (2001) Environmental Health Criteria 222. Biomarkers in Risk Assessment: Validity and Validation. http://www.inchem.org/documents/ehc/ehc/ehc222.htm. Accessed 2001

  9. Zhang H, Barratt J (2021) Is IgA nephropathy the same disease in different parts of the world? Semin Immunopathol 43:707–715. https://doi.org/10.1007/s00281-021-00884-7

    Article  CAS  PubMed  Google Scholar 

  10. Schena FP, Nistor I (2018) Epidemiology of IgA nephropathy: a global perspective. Semin Nephrol 38:435–442

    Article  PubMed  Google Scholar 

  11. Lai KN, Tang SC, Schena FP, Novak J, Tomino Y, Fogo AB, Glassock RJ (2016) IgA nephropathy. Nat Rev Dis Primers 2:16001

    Article  PubMed  Google Scholar 

  12. Barbour SJ, Cattran DC, Kim SJ, Levin A, Wald R, Hladunewich MA, Reich HN (2013) Individuals of Pacific Asian origin with IgA nephropathy have an increased risk of progression to end-stage renal disease. Kidney Int 84:1017–1024

    Article  CAS  PubMed  Google Scholar 

  13. Mizerska-Wasiak M, Turczyn A, Such A, Cichoń-Kawa K, Małdyk J, Miklaszewska M, Pietrzyk J, Rybi-Szumińska A, Wasilewska A, Firszt-Adamczyk A, Stankiewicz R, Szczepańska M, Bieniaś B, Zajączkowska M, Pukajło-Marczyk A, Zwolińska D, Siniewicz-Luzeńczyk K, Tkaczyk M, Gadomska-Prokop K, Grenda R, Demkow U, Pańczyk-Tomaszewska M (2016) IgA nephropathy in children: a multicenter study in Poland. Adv Exp Med Biol 952:75–84. https://doi.org/10.1007/5584_2016_65

    Article  CAS  PubMed  Google Scholar 

  14. Coppo R, Robert T (2020) IgA nephropathy in children and in adults: two separate entities or the same disease? J Nephrol 33:1219–1229. https://doi.org/10.1007/s40620-020-00725-0

    Article  PubMed  Google Scholar 

  15. Cambier A, Rabant M, El Karoui K, Peuchmaur M, Servais A, Hertig A, Deschenes G, Salomon R, Hogan J, Robert T (2020) Clinical and histological differences between adults and children in new onset IgA nephropathy. Pediatr Nephrol 35:1897–1905. https://doi.org/10.1007/s00467-020-04614-3

    Article  PubMed  Google Scholar 

  16. Coppo R, Feehally J, Glassock RJ (2010) IgA nephropathy at two score and one. Kidney Int 77:181–186

    Article  CAS  PubMed  Google Scholar 

  17. Trimarchi H, Barratt J, Cattran DC (2017) Oxford Classification of IgA nephropathy 2016: an update from the IgA Nephropathy Classification Working Group. Kidney Int 91:1014–1021

    Article  PubMed  Google Scholar 

  18. Mestecky J, Moro I, Kerr MA, Woof JM (2005) Mucosal immunoglobulins. In: Mestecky J, Bienenstock J, Lamm ME, Mayer L, McGhee JR, Strober W (eds) Mucosal Immunology, 3rd edn. Elsevier Academic Press, Amsterdam, pp 153–181

    Chapter  Google Scholar 

  19. Moldoveanu Z, Wyatt RJ, Lee J, Tomana M, Julian BA, Mestecky J, Huang WQ, Anreddy S, Hall S, Hastings MC, Lau KK, Cook WJ, Novak J (2007) Patients with IgA nephropathy have increased serum galactose-deficient IgA1 levels. Kidney Int 71:1148–1154

    Article  CAS  PubMed  Google Scholar 

  20. Suzuki H, Fun R, Zhang Z, Brown R, Hall S, Julian BA, Chatham WW, Suzuki Y, Wyatt RJ, Moldoveanu Z, Lee JY, Robinson J, Tomana M, Tomino Y, Mestecky J, Novak J (2009) Aberrantly glycosylated IgA1 in IgA nephropathy patients is recognized by IgG antibodies with restricted heterogeneity. J Clin Invest 119:1668–1677

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Suzuki H, Kiryluk K, Novak J, Moldoveanu Z, Herr AB, Renfrow MB, Wyatt RJ, Scolari F, Mestecky J, Gharavi AG, Julian BA (2011) The pathophysiology of IgA nephropathy. J Am Soc Nephrol 22:1795–1803. https://doi.org/10.1681/ASN.2011050464

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Zhai YL, Zhu L, Shi SF, Liu LJ, Lv JC, Zhang H (2016) Increased APRIL Expression Induces IgA1 Aberrant glycosylation in IgA nephropathy. Medicine (Baltimore) 95:e3099. https://doi.org/10.1097/MD.0000000000003099

    Article  CAS  PubMed  Google Scholar 

  23. Yu XQ, Li M, Zhang H et al (2012) A genome-wide association study in Han Chinese identifies multiple susceptibility loci for IgA nephropathy. Nat Genet 44:178–182

    Article  CAS  Google Scholar 

  24. McCarthy DD, Kujawa J, Wilson C, Papandile A, Poreci U, Porfilio EA, Ward L, Lawson MA, Macpherson AJ, McCoy KD, Pei Y, Novak L, Lee JY, Julian BA, Novak J, Ranger A, Gommerman JL, Browning JL (2011) Mice overexpressing BAFF develop a commensal flora-dependent, IgA-associated nephropathy. J Clin Invest 121:3991–4002. https://doi.org/10.1172/JCI45563.Erratum.In:JClinInvest(2012)122:778

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Kiryluk K, Novak J (2014) The genetics and immunobiology of IgA nephropathy. J Clin Invest 124:2325–2332. https://doi.org/10.1172/JCI74475

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Kiryluk K, Li Y, Sanna-Cherchi S, Rohanizadegan M et al (2012) Geographic differences in genetic susceptibility to IgA nephropathy: GWAS replication study and geospatial risk analysis. PLoS Genet 8:e1002765

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Gharavi AG, Moldoveanu Z, Wyatt RJ, Barker CV, Woodford SY, Lifton RP, Mestecky J, Novak J, Julian BA (2008) Aberrant IgA1 glycosylation is inherited in familial and sporadic IgA nephropathy. J Am Soc Nephrol 19:1008–1014

    Article  PubMed  PubMed Central  Google Scholar 

  28. Solberg OD, Mack SJ, Lancaster AK, Single RM, Tsai Y, Sanchez-Mazas A, Thomson G (2008) Balancing selection and heterogeneity across the classical human leukocyte antigen loci: A meta-analytic review of 497 population studies. Hum Immunol 69:443–464

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Knoppova B, Reily C, Maillard N, Rizk DV, Moldoveanu Z, Mestecky J, Raska M, Renfrow MB, Julian BA, Novak J (2016) The origin and activities of IgA1-containing immune complexes in IgA nephropathy. Front Immunol 7:117. https://doi.org/10.3389/fimmu.2016.00117

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Wisse E, Jacobs F, Topal B, Frederik P, De Geest B (2008) The size of endothelial fenestrae in human liver sinusoids: implications for hepatocyte-directed gene transfer. Gene Ther 15:1193–1199. https://doi.org/10.1038/gt.2008.60

    Article  CAS  PubMed  Google Scholar 

  31. Lai KN, Leung JC, Chan LY, Saleem MA, Mathieson PW, Lai FM, Tang SC (2008) Activation of podocytes by mesangial-derived TNF-alpha: glomerulo-podocytic communication in IgA nephropathy. Am J Physiol Renal Physiol 294:F945–F955

    Article  CAS  PubMed  Google Scholar 

  32. Lai KN, Leung JC, Chan LY, Saleem MA, Mathieson PW, Tam KY, Xiao J, Lai FM, Tang SC (2009) Podocyte injury induced by mesangial-derived cytokines in IgA nephropathy. Nephrol Dial Transplant 24:62–72

    Article  CAS  PubMed  Google Scholar 

  33. Zhang J, Li Y, Shan K, Wang L, Qiu W, Lu Y, Zhao D, Zhu G, He F, Wang Y (2014) Sublytic C5b–9 induces IL-6 and TGF-β1 production by glomerular mesangial cells in rat Thy-1 nephritis through p300-mediated C/EBPβ acetylation. FASEB J 28:1511–1525

    Article  CAS  PubMed  Google Scholar 

  34. Medjeral-Thomas NR, Cook HT, Pickering MC (2021) Complement activation in IgA nephropathy. Semin Immunopathol 43:679–690. https://doi.org/10.1007/s00281-021-00882-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Berthelot L, Papista C, Maciel TT, Biarnes-Pelicot M, Tissandie E, Wang PH, Tamouza H, Jamin A, Bex-Coudrat J, Gestin A, Boumediene A, Arcos-Fajardo M, England P, Pillebout E, Walker F, Daugas E, Vrtosvnik F, Flamant M, Benhamou M, Cogné M, Moura IC, Monteiro RC (2012) Transglutaminase is essential for IgA nephropathy development acting through IgA receptors. J Exp Med 209:793–806. https://doi.org/10.1084/jem.20112005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Launay P, Grossetête B, Arcos-Fajardo M, Gaudin E, Torres SP, Beaudoin L, Patey-Mariaud de Serre N, Lehuen A, Monteiro RC (2000) Fcalpha receptor (CD89) mediates the development of immunoglobulin A (IgA) nephropathy (Berger’s disease). Evidence for pathogenic soluble receptor-Iga complexes in patients and CD89 transgenic mice. J Exp Med 191:1999–2009

  37. Moura IC, Arcos-Fajardo M, Sadaka C, Leroy V, Benhamou M, Novak J, Vrtovsnik F, Haddad E, Chintalacharuvu KR, Monteiro RC (2004) Glycosylation and size of IgA1 are essential for interaction with mesangial transferrin receptor in IgA nephropathy. J Am Soc Nephrol 15:622–634

    Article  CAS  PubMed  Google Scholar 

  38. Moura IC, Arcos-Fajardo M, Gdoura A, Leroy V, Sadaka C, Mahlaoui N, Lepelletier Y, Vrtovsnik F, Haddad E, Benhamou M, Monteiro RC (2005) Engagement of transferrin receptor by polymeric IgA1: evidence for a positive feedback loop involving increased receptor expression and mesangial cell proliferation in IgA nephropathy. J Am Soc Nephrol 16:2667–2676

    Article  CAS  PubMed  Google Scholar 

  39. Jennette J (1988) The immunohistology of IgA nephropathy. Am J Kidney Dis 12:348–352. https://doi.org/10.1016/S0272-6386(88)80022-2

    Article  CAS  PubMed  Google Scholar 

  40. Roos A, Rastaldi MP, Calvaresi N, Oortwijn BD, Schlagwein N, van Gijlswijk-Janssen DJ, Stahl GL, Matsushita M, Fujita T, van Kooten C, Daha MR (2006) Glomerular activation of the lectin pathway of complement in IgA nephropathy is associated with more severe renal disease. J Am Soc Nephrol 17:1724–1734

    Article  CAS  PubMed  Google Scholar 

  41. Espinosa M, Ortega R, Sanchez M, Segarra A, Salcedo MT, Gonzalez F, Camacho R, Valdivia MA, Cabrera R, Lopez K, Pinedo F, Gutierrez E, Valera A, Leon M, Cobo MA, Rodriguez R, Ballarin J, Arce Y, Garcia B, Munoz MD, Praga M (2014) Association of C4d deposition with clinical outcomes in IgA nephropathy. Clin J Am Soc Nephrol 9:897–904

    Article  PubMed  PubMed Central  Google Scholar 

  42. Daha MR, van Kooten C (2016) Role of complement in IgA nephropathy. J Nephrol 29:1–4. https://doi.org/10.1007/s40620-015-0245-6

    Article  CAS  PubMed  Google Scholar 

  43. Mizerska-Wasiak M, Małdyk J, Pańczyk-Tomaszewska M, Turczyn A, Cichoń-Kawa K, Rybi-Szumińska A, Wasilewska A, Firszt-Adamczyk A, Stankiewicz R, Bieniaś B, Zajączkowska M, Gadomska-Prokop K, Grenda R, Miklaszewska M, Pietrzyk J, Pukajło-Marczyk ZD, Szczepańska M, Demkow U, Roszkowska-Blaim M (2015) Increased serum IgA in children with IgA nephropathy, severity of kidney biopsy findings and long-term outcomes. Adv Exp Med Biol 873:79–86. https://doi.org/10.1007/5584_2015_160

    Article  CAS  PubMed  Google Scholar 

  44. Mizerska-Wasiak M, Małdyk J, Rybi-Szumińska A, Wasilewska A, Miklaszewska M, Pietrzyk J, Firszt-Adamczyk A, Stankiewicz R, Bieniaś B, Zajączkowska M, Gadomska-Prokop K, Grenda R, Pukajło-Marczyk A, Zwolińska D, Szczepańska M, Turczyn A, Roszkowska-Blaim M (2015) Relationship between serum IgA/C3 ratio and severity of histological lesions using the Oxford classification in children with IgA nephropathy. Pediatr Nephrol 30:1113–1120. https://doi.org/10.1007/s00467-014-3024-z

    Article  PubMed  Google Scholar 

  45. Tomino Y, Suzuki S, Imai H, Saito T, Kawamura T, Yorioka N et al (2000) Measurement of serum IgA and C3 may predict the diagnosis of patients with IgA nephropathy prior to renal biopsy. J Clin Lab Anal 14:220–223. https://doi.org/10.1002/1098-2825(2000)14:5%3C220::AID-JCLA4%3E3.0.CO;2-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Yanagawa H, Suzuki H, Suzuki Y, Kiryluk K, Gharavi AG, Matsuoka K, Makita Y, Julian BA, Novak J, Tomino Y (2014) A panel of serum biomarkers differentiates IgA nephropathy from other renal diseases. PLoS One 9:e98081. https://doi.org/10.1371/journal.pone.0098081

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Kim SJ, Koo HM, Lim BJ, Oh HJ, Yoo DE, Shin DH, Lee MJ, Doh FM, Park JT, Yoo TH, Kang SW, Choi KH, Jeong HJ, Han SH (2012) Decreased circulating C3 levels and mesangial C3 deposition predict renal outcome in patients with IgA nephropathy. PLoS One 7:e40495. https://doi.org/10.1371/journal.pone.0040495

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Mizerska-Wasiak M, Such-Gruchot A, Cichon-Kawa K, Turczyn A, Małdyk J, Miklaszewska M, Drożdż D, Firszt-Adamczyk A, Stankiewicz R, Rybi-Szumińska A, Wasilewska A, Szczepanska M, Bieniaś B, Sikora P, Pukajło-Marczyk A, Zwolińska D, Pawlak-Bratkowska M, Tkaczyk M, Zachwieja J, Drożyńska-Duklas M, Żurowska A, Gadomska-Prokop K, Grenda R, Pańczyk-Tomaszewska M (2021) The role of complement component C3 activation in the clinical presentation and prognosis of IgA nephropathy – a national study in children. J Clin Med 10:4405. https://doi.org/10.3390/jcm10194405

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Zwirner J, Burg M, Schulze M, Brunkhorst R, Gotze O et al (1997) Activated complement C3: a potentially novel predictor of progressive IgA nephropathy. Kidney Int 51:1257–1264

    Article  CAS  PubMed  Google Scholar 

  50. Onda K, Ohsawa I, Ohi H, Tamano M, Mano S, Wakabayashi M, Toki A, Horikoshi S, Fujita T, Tomino Y (2011) Excretion of complement proteins and its activation marker C5b–9 in IgA nephropathy in relation to renal function. BMC Nephrol 12:64. https://doi.org/10.1186/1471-2369-12-64

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Guo WY, Zhu L, Meng SJ, Shi SF, Liu LJ, Lv JC, Zhang H (2017) Mannose-binding lectin levels could predict prognosis in IgA nephropathy. J Am Soc Nephrol 28:3175–3181. https://doi.org/10.1681/ASN.2017010076

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Zhu L, Zhai YL, Wang FM, Hou P, Lv JC, Xu DM et al (2015) Variants in complement factor H and complement factor H-related protein genes, CFHR3 and CFHR1, affect complement activation in IgA nephropathy. J Am Soc Nephrol 26:1195–1204. https://doi.org/10.1681/ASN.2014010096200

    Article  CAS  PubMed  Google Scholar 

  53. Komatsu H, Fujimoto S, Hara S, Sato Y, Yamada K, Eto T (2004) Relationship between serum IgA/C3 ratio and progression of IgA nephropathy. Intern Med 43:1023–1028. https://doi.org/10.2169/internalmedicine.43.1023

    Article  CAS  PubMed  Google Scholar 

  54. Ishiguro C, Yaguchi Y, Funabiki K, Horikoshi S, Shirato I, Tomino Y (2002) Serum IgA/C3 ratio may predict diagnosis and prognostic grading in patients with IgA nephropathy. Nephron 91:755–758. https://doi.org/10.1159/000065043

    Article  PubMed  Google Scholar 

  55. Kawasaki Y, Maeda R, Ohara S, Suyama K, Hosoya M (2018) Serum IgA/C3 and glomerular C3 staining predict severity of IgA nephropathy. Pediatr Int 60:162–167. https://doi.org/10.1111/ped.13461

    Article  CAS  PubMed  Google Scholar 

  56. Zhang J, Wang C, Tang Y, Peng H, Ye ZC, Li CC, Lou TQ (2013) Serum immunoglobulin A/C3 ratio predicts progression of immunoglobulin A nephropathy. Nephrology (Carlton) 8:125–131. https://doi.org/10.1111/nep.12010

    Article  CAS  Google Scholar 

  57. Stefan G, Stancu S, Boitan B, Zugravu A, Petre N, Mircescu G (2020) Is there a role for IgA/C3 ratio in IgA nephropathy prognosis? An outcome analysis on a European population. Iran J Kidney Dis 14:470–477

    PubMed  Google Scholar 

  58. Hirano K, Amano H, Kawamura T, Watanabe K, Koike K, Shimizu A et al (2016) Tonsillectomy reduces recurrence of IgA nephropathy in mesangial hypercellularity type categorized by the Oxford classification. Clin Exp Nephrol 20:425–432. https://doi.org/10.1007/s10157-015-1170-7

    Article  CAS  PubMed  Google Scholar 

  59. Varis J, Rantala I, Pasternack A, Oksa H, Jantti M, Paunu ES et al (1993) Immunoglobulin and complement deposition in glomeruli of 756 subjects who had committed suicide or met with a violent death. J Clin Pathol 46:607–610

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Suzuki K, Honda K, Tanabe K, Toma H, Nihei H, Yamaguchi Y (2003) Incidence of latent mesangial IgA deposition in renal allograft donors in Japan. Kidney Int 63:2286–2294. https://doi.org/10.1046/j.1523-1755.63.6s.2.x

    Article  PubMed  Google Scholar 

  61. Yamaji K, Suzuki Y, Suzuki H et al (2014) The kinetics of glomerular deposition of nephritogenic IgA. PLoS One 9:e113005

    Article  PubMed  PubMed Central  Google Scholar 

  62. Wyatt RJ, Julian BA (2013) IgA nephropathy. N Engl J Med 368:2402–2414

    Article  CAS  PubMed  Google Scholar 

  63. Cichoń-Kawa K, Mizerska-Wasiak M, Małdyk J, Turczyn A, Rybi-Szumińska A, Wasilewska A, Firszt-Adamczyk A, Stankiewicz R, Bieniaś B, Sikora P, Gadomska-Prokop K, Grenda R, Pańczyk-Tomaszewska M (2018) Influence of intensity, localization and type of deposits in renal biopsy for disease symptoms and follow up in children with IgA nephropathy. Pol Merkur Lekarski 44:177–182

    PubMed  Google Scholar 

  64. Cassol CA, Bott C, Nadasdy GM, Alberton V, Malvar A, Nagaraja HN, Nadasdy T, Rovin BH, Satoskar AA (2020) Immunostaining for galactose-deficient immunoglobulin A is not specific for primary immunoglobulin A nephropathy. Nephrol Dial Transplant 35:2123–2129. https://doi.org/10.1093/ndt/gfz152

    Article  CAS  PubMed  Google Scholar 

  65. Roos A, Bouwman LH, van Gijlswijk-Janssen DJ, Faber-Krol MC, Stahl GL, Daha MR (2001) Human IgA activates the complement system via the mannan-binding lectin pathway. J Immunol 167:2861–2868. https://doi.org/10.4049/jimmunol.167.5.2861

    Article  CAS  PubMed  Google Scholar 

  66. Paunas TIF, Finne K, Leh S, Marti HP, Mollnes TE, Berven F et al (2017) Glomerular abundance of complement proteins characterized by proteomic analysis of laser-captured microdissected glomeruli associates with progressive disease in IgA nephropathy. Clin Proteom 14:30. https://doi.org/10.1186/s12014-017-9165-x

    Article  CAS  Google Scholar 

  67. Tortajada A, Gutierrez E, Pickering MC, Praga Terente M, Medjeral-Thomas N (2019) The role of complement in IgA nephropathy. Mol Immunol 114:123–132. https://doi.org/10.1016/j.molimm.2019.07.017

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Małgorzata Mizerska-Wasiak.

Ethics declarations

Conflict of interest

The author declares no competing interests.

Additional information

Answers

1. a, b, c, d; 2. a, b, d, e; 3. a, b, c, e; 4. a, b; 5. a, c, e

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mizerska-Wasiak, M. How to take advantage of easily available biomarkers in patients with IgA nephropathy: IgA and C3 in serum and kidney biopsies. Pediatr Nephrol 38, 1439–1448 (2023). https://doi.org/10.1007/s00467-022-05644-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00467-022-05644-9

Keywords

Navigation