Skip to main content
Log in

Weak approximation of SDEs for tempered distributions and applications

  • Published:
Advances in Computational Mathematics Aims and scope Submit manuscript

Abstract

The paper shows a new weak approximation for generalized expectation of composition of a Schwartz tempered distribution and a solution to stochastic differential equation. Any order discretization is provided by using stochastic weights which do not depend on the Schwartz distribution. The error bound is obtained through stochastic analysis, which is consistent with the results of numerical experiments. It can also be confirmed that the proposed approximation gives high numerical accuracy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Aït-Sahalia, Y., Li, C., Li, C. X.: Maximum likelihood estimation of latent markov models using Closed-Form approximations. J. Econom., forthcoming (2021)

  2. Aït-Sahalia, Y., Li, C., Li, C. X.: Closed-form implied volatility surfaces for stochastic volatility models with jumps. J. Econom., forthcoming (2021)

  3. Bally, V., Talay, D.: The law of the Euler scheme for stochastic differential equations I. Convergence rate of the distribution function. Probab. Theory Relat. Fields 104, 43–60 (1996)

    Article  MathSciNet  Google Scholar 

  4. Bayer, C., Friz, P., Loeffen, R.: Semi-closed form cubature and applications to financial diffusion models. Quant. Finance 13, 769–782 (2010)

    Article  MathSciNet  Google Scholar 

  5. Cai, N., Li, C., Shi, C.: Closed-form expansions of discretely monitored asian options in diffusion models. Math. Oper. Res. 39(3), 789–822 (2014)

    Article  MathSciNet  Google Scholar 

  6. Ditlevsen, S., Samson, A.: Hypoelliptic diffusions: discretization, filtering and inference from complete and partial observations. J. R. Stat. Soc. B 81, 361–384 (2019)

    Article  MathSciNet  Google Scholar 

  7. Friedman, A.: Partial Differential Equations of Parabolic Type. Prentice-Hall Inc, New Jersey (1964)

    MATH  Google Scholar 

  8. Gobet, E., Labart, C.: Sharp estimates for the convergence of the density of the Euler scheme in small time. Electron. Commun. Probab. 13, 352–363 (2008)

    Article  MathSciNet  Google Scholar 

  9. Gyurkó, L. G., Lyons, T.: Efficient and Practical Implementations of Cubature on Wiener space. Stochastic Analysis 2010, pp 73–111. Springer, Berlin (2010)

    MATH  Google Scholar 

  10. Guyon, J.: Euler schemes and tempered distributions. Stoch. Process. Appl. 116, 877–904 (2006)

    Article  MathSciNet  Google Scholar 

  11. Hayashi, M., Ishikawa, Y.: Composition with distributions of Wiener-Poisson variables and its asymptotic expansion. Math. Nach. 285(5-6), 619–658 (2012)

    Article  MathSciNet  Google Scholar 

  12. Iguchi, Y., Yamada, T.: A second order discretization for degenerate systems of stochastic differential equations. IMA J. Numer. Anal., to appear (2020)

  13. Iguchi, Y., Yamada, T.: Operator splitting around Euler-Maruyama scheme and high order discretization of heat kernels. ESAIM: Math. Model. Numer. Anal., to appear (2020)

  14. Ikeda, N., Watanabe, S: Stochastic Differential Equations and Diffusion processes, 2nd edn. North-Holland Mathematical Library (1989)

  15. Kusuoka, S.: Approximation of expectation of diffusion process and mathematical finance. Adv. Stud. Pure Math. 31, 147–165 (2001)

    Article  MathSciNet  Google Scholar 

  16. Kusuoka, S.: Approximation of expectation of diffusion process based on lie algebra and Malliavin calculus. Adv. Math. Econ. 6, 69–83 (2004)

    Article  Google Scholar 

  17. Kusuoka, S., Stroock, D.: Applications of the Malliavin calculus Part I. Stoch. Anal. (Katata/Kyoto 1982) 271–306 (1984)

  18. Li, C.: Maximum-likelihood estimation for diffusion process via closed-form density expansions. Ann. Stat. 41(3), 1350–1380 (2013)

    Article  Google Scholar 

  19. Li, C., Chen, D.: Estimating jump-diffusions using closed-form likelihood expansions. J. Econ. 195(1), 51–70 (2016)

    Article  MathSciNet  Google Scholar 

  20. Lyons, T., Victoir, N.: Cubature on Wiener Space. Proc. R. Soc. A 460(2041), 169–198 (2004)

    Article  MathSciNet  Google Scholar 

  21. Müller, E. H., Scheichl, R., Shardlow, T.: Improving multilevel Monte Carlo for stochastic differential equations with application to the Langevin equation. Proc. R. Soc. A 471(2176) (2015)

  22. Monoyios, M.: Performance of utility-based strategies for hedging basis risk. Quant. Finance 4, 245–255 (2004)

    Article  MathSciNet  Google Scholar 

  23. Ninomiya, S., Victoir, N.: Weak approximation of stochastic differential equations and application to derivative pricing. Appl. Math. Finance 15, 107–121 (2008)

    Article  MathSciNet  Google Scholar 

  24. Nualart, D.: The Malliavin Calculus and Related Topics. Springer, Berlin (2006)

    MATH  Google Scholar 

  25. Takahashi, A.: Asymptotic expansion approach in finance. In: Friz, P., Gatheral, J., Gulisashvili, A., Jacquier, A., Teichmann, J. (eds.) Large Deviations and Asymptotic Methods in Finance. Springer Proceedings in Mathematics & Statistics. Switzerland (2015)

  26. Takahashi, A., Yamada, T.: An asymptotic expansion with push-down of Malliavin weights. SIAM J. Financ. Math. 3, 95–136 (2012)

    Article  MathSciNet  Google Scholar 

  27. Takahashi, A., Yamada, T.: A weak approximation with asymptotic expansion and multidimensional Malliavin weights. Ann. Appl. Probab. 26(2), 818–856 (2016)

    Article  MathSciNet  Google Scholar 

  28. Watanabe, S.: Analysis of Wiener functionals (Malliavin calculus) and its applications to heat kernels. Ann. Probab. 15, 1–39 (1987)

    Article  MathSciNet  Google Scholar 

  29. Yamada, T.: An arbitrary high order weak approximation of SDE and Malliavin Monte Carlo: analysis of probability distribution functions. SIAM J. Numer. Anal. 57(2), 563–591 (2019)

    Article  MathSciNet  Google Scholar 

  30. Yamada, T., Yamamoto, K.: Second order discretization of Bismut-Elworthy-Li formula: application to sensitivity analysis. SIAM/ASA J. Uncertain. Quantif. 7(1), 143–173 (2019)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

We thank the three anonymous referees and the associate editor for valuable comments and suggestions which improved the content of the paper.

Funding

The first author has been supported by Heilbronn Institute for Mathematical Research (HIMR) and UKRI under the grant “Additional Funding Programme for Mathematical Sciences” (EP/V521917/1); and the second author has been supported by JSPS KAKENHI (Grant Number 19K13736) and JST PRESTO (Grant Number JPMJPR2029), Japan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Toshihiro Yamada.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Communicated by: Anthony Nouy

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix A. Proof of Proposition 1

In order to show the assertion, we first consider the expansion of \(P_{t} f (x) = \langle f , {p^{X}_{t}} (x, \cdot ) \rangle \) around \(P_{t}^{0,z} f (x) |_{z=x} = \langle f, p^{\bar {X}^{z}}_{t} (x, \cdot )\rangle |_{z=x} \)based on the following perturbation formula:

$$ \begin{array}{@{}rcl@{}} P_{t} f(x) = P_{t}^{0,z} f(x) |_{z=x} + {{\int}_{0}^{t}} P_{t-s} (\mathscr{L} - \mathscr{L}_{0}^{z} ) P_{t}^{0,z} f (x) ds |_{z=x}. \end{array} $$
(A.1)

Furthermore, we introduce

$$ \begin{array}{@{}rcl@{}} P_{s}^{i,z} f(x) = \sum\limits_{k=0}^{i-1} {{\int}_{0}^{t}} P_{t-s}^{0,z} \mathscr{L}_{i-k}^{z} P_{s}^{k,z} f (x) ds, i =1,2, \ldots, 2 m + 2 \ell + 1, \end{array} $$
(A.2)

which approximates the target Ptf(x) and is naturally defined in the process of iterative expansion of the equation (A.1). In particular, the definition of \(P_{s}^{i,z} f(x)\) is relies on the expansion of \({\mathscr{L}}\) around \({\mathscr{L}}_{0}^{z}\) as \({\mathscr{L}} - {\mathscr{L}}_{0}^{z} = \textstyle {{\sum }_{k=1}^{2m + 2\ell +1}} {\mathscr{L}}_{k}^{z} + \widetilde {{\mathscr{L}}}^{z}\) where \(\widetilde {{\mathscr{L}}}^{z}\) is defined as

$$ \begin{array}{@{}rcl@{}} \widetilde{\mathscr{L}}^{z} \varphi (x)&=&\sum\limits_{\beta_{1},\ldots,\beta_{2m + 2\ell+2}=1}^{N} \prod\limits_{k=1}^{2m+ 2\ell + 2} (x_{\beta_{k}}-z_{\beta_{k}}) \left\{ \sum\limits_{r_{1}=1}^{N} h^{\beta_{1},\ldots,\beta_{2m+ 2\ell+ 2}}_{r_{1}}(x,z) \frac{\partial}{\partial x_{r_{1}} } \varphi (x)\right.\\ && \left.+ \sum\limits_{r_{1},r_{2}=1}^{N} h^{\beta_{1},\ldots,\beta_{2m+ 2\ell + 2}}_{r_{1},r_{2}}(x,z) \frac{\partial^{2}}{\partial x_{r_{1}} \partial x_{r_{2}}} \varphi (x) \right\}, \ \ \ \varphi \!\in\! C_{b}^{\infty}({\mathbb R}^{N}), \ x \in {\mathbb R}^{N}, \end{array} $$

for some bounded functions \(h^{\beta _{1},\ldots ,\beta _{2m+2\ell +2}}_{r_{1},\ldots ,r_{k}}(\cdot ,z)\), β1,…,β2m+ 2+ 2 = 1,⋯ ,N, k = 1, 2.

Then the strategy of the proof of assertion is as follows.

  • Step 1. For \(f \in \mathcal {S}(\mathbb {R}^{N})\) and integers m and , we define

    $$ \mathcal{E}_{1,t}^{m,\ell} f(x) := \langle f, {p^{X}_{t}} (x, \cdot) \rangle - \sum\limits_{i=0}^{2m + 2\ell +1 } P_{t}^{i,z} f(x), \ \ t >0, x \in \mathbb{R}^{N}. $$
    (A.3)

    We show that the term \(\mathcal {E}_{1,t}^{m,\ell } f(x)\) is given in the form of \( \mathcal {E}_{1,t}^{m,\ell } f(x) = \langle f , {e}_{1,t}^{m,\ell } (x, \cdot ) \rangle \) where \({e}_{1,t}^{m,\ell } : \mathbb {R}^{N} \times \mathbb {R}^{N} \to \mathbb {R}\) satisfies \(| {e}_{1,t}^{m,\ell } (x,y )| \leq C t^{m+\ell +1} \frac {1}{t^{N/2}} e^{-c |y-x|^{2} / t }\) for some positive constants C and c.

  • Step 2. We decompose the expansion formula \(\textstyle {{\sum }_{i=0}^{2m +2 \ell +1 }} P_{t}^{i,z} f(x)\) into computation term \(\langle f, \vartheta _{t}^{(m)}(x, \cdot ) \rangle \) and error term \(\mathcal {E}_{2,t}^{m,\ell } f(x)\), i.e.

    $$ \begin{array}{@{}rcl@{}} \sum\limits_{i=0}^{2m + 2 \ell + 1} P_{t}^{i,z} f(x) = \langle f, \vartheta_{t}^{(m)} (x, \cdot) \rangle + \mathcal{E}_{2,t}^{m,\ell} f(x) \end{array} $$
    (A.4)

    where \(\mathcal {E}^{m,\ell }_{2,t}f: \mathbb {R}^{N} \rightarrow \mathbb {R}\) has the form \(\textstyle {\mathcal {E}^{m,\ell }_{2, t}f(x)= t^{m+1}{\sum }_{i=1}^{{j}(m,\ell )} C_{\alpha ^{i}}(t,x)}\) \( \langle \partial ^{\alpha ^{i}} f, p^{\bar {X}}_{t}(x,\cdot ) \rangle \) with some integer \({j}(m,\ell ) \in \mathbb {N}\), multi-indices αi, i = 1,⋯ ,j(m,) and bounded functions \(C_{\alpha ^{i}}:[0,1] \times \mathbb {R}^{N} \rightarrow \mathbb {R}\).

From Step 1 and 2, we immediately have

$$ \langle f, {p^{X}_{t}} (x, \cdot) \rangle = \sum\limits_{i=0}^{2m + 2\ell +1 } P_{t}^{i,z} f(x) + \mathcal{E}_{1,t}^{m,\ell} f(x) = \langle f, \vartheta_{t}^{(m)} (x, \cdot) \rangle + \mathcal{E}_{1,t}^{m,\ell} f(x) + \mathcal{E}_{2,t}^{m,\ell} f(x). $$
(A.5)

1.1 A.1 Step 1: On the error term \(\mathcal {E}_{1,t}^{m,\ell } f(x)\)

According to (B.14) in [13], it follows that

$$ \begin{array}{@{}rcl@{}} && \mathcal{E}_{1,t}^{m,\ell} f(x) = \sum\limits_{k=0}^{2m + 2 \ell + 1} {{\int}_{0}^{t}} P_{t-s} \left( \mathscr{L} - \sum\limits_{i=0}^{2m + 2 \ell + 1 -k} \mathscr{L}_{i}^{z} \right)P_{s}^{k,z} f (x) ds |_{z=x} \\ & = & {{\int}_{0}^{t}} P_{t-s} \widetilde{\mathscr{L}^{z}} P_{s}^{0,z} f (x) ds |_{z=x} + \sum\limits_{i=1}^{2m + 2 \ell + 1 }{{\int}_{0}^{t}} P_{t-s} \left( \mathscr{L}^{z}_{2m + 2 \ell +1 } + {\cdots} + \mathscr{L}^{z}_{2m + 2 \ell - (i-1) } + \widetilde{\mathscr{L}}^{z} \right) P_{s}^{i,z} f (x) ds |_{z=x} . \end{array} $$

Hence, due to the definition of the semigroup {Pt}t≥ 0 and the differential operators \(\widetilde {{\mathscr{L}}}^{z}\) and \({\mathscr{L}}^{z}_{2m + 2 \ell + 1 -q }, q=0, \ldots , i\), \(\mathcal {E}_{1,t}^{m,\ell } f(x)\) is given as the sum of the following terms: for i = 0, 1,…, 2m + 2 + 1,

$$ \begin{array}{@{}rcl@{}} {{\int}_{0}^{t}} E \left[ \partial^{\alpha} (P_{s}^{i,z} f) (X(t-s,x) ) g^{\alpha, q} (X(t-s, x)) \prod\limits_{j=1}^{2m + 2 \ell + 2 - q } (X^{\beta_{j}} (t-s,x) - z_{\beta_{j}} ) \right]ds |_{z=x}, \end{array} $$
(A.6)

where α ∈{1,…,N}|α| is a multi-index with length |α| = 1, 2, q = 1,…,i, βj ∈{1,…,N},j = 1,…, 2m + 2 + 2 − q and the function gα,q belongs to \(C_{b}^{\infty } (\mathbb {R}^{N} )\). In particular, we assume q = 0 when i = 0. Here, applying the Malliavin integration by parts formula, we obtain

$$ \begin{array}{@{}rcl@{}} && E \left[ \partial^{\alpha} (P_{s}^{i,z} f) (X(t-s,x) ) g^{\alpha, q} (X(t-s, x)) \prod\limits_{j=1}^{2m + 2 \ell + 2 - q } (X^{\beta_{j}} (t-s,x) - z_{\beta_{j}} ) \right] |_{z=x} \\ &= & E \left[ (P_{s}^{i,z} f) (X(t-s,x) ) H_{\alpha} \left( X(t-s, x), g^{\alpha, q} (X(t-s, x)) \prod\limits_{j=1}^{2m + 2 \ell + 2 - q } (X^{\beta_{j}} (t-s,x) - z_{\beta_{j}} ) \right) \right] |_{z=x} . \end{array} $$
(A.7)

In particular, applying the lemma below to \((P_{s}^{i,z} f) (X(t-s,x) )\), we find that the above expectation is given as the sum of the following term:

$$ \begin{array}{@{}rcl@{}} &&\mathcal{M}_{f} (t,s,x) := E \left[s^{\iota} \psi(z) \prod\limits_{j=1}^{p} \left( X^{k_{j}} (t-s,x) - z_{k_{j}} \right)\right.\\ &&\quad\left.\times \partial^{\gamma} (P_{s}^{0,z} f ) (X(t-s,x)) H_{\alpha} \left( X(t-s, x), g^{\alpha, q} \left( X(t-s, x) \right) \! \! \prod\limits_{j=1}^{2m + 2 \ell + 2 - q } \! \! (X^{\beta_{j}} (t-s,x) - z_{\beta_{j}} ) \right) \right] |_{z=x} , \end{array} $$
(A.8)

where ι ≥ 1, p ≥ 0 and the multi-index γ ∈{1,…,N}|γ| satisfies 2ι + p −|γ|≥ i with \(\psi \in C_{b}^{\infty } (\mathbb {R}^{N} )\), kj = 1,…,N, j = 1,…,p.

Lemma 1

For \(i \in \mathbb {N}\), each term of \(P_{s}^{i,z} f (y), s \in (0,1], y, z \in \mathbb {R}^{N}\) is given in the form

$$ \begin{array}{@{}rcl@{}} s^{\iota} \psi(z) \prod\limits_{j=1}^{p} \left( y_{k_{j}} - z_{k_{j}} \right) \partial^{\gamma} (P_{s}^{0,z} f ) (y ) \end{array} $$
(A.9)

where ι ≥ 1, p ≥ 0 and the multi-index γ ∈{1,…,N}|γ| satisfy 2ι + p −|γ|≥ i with \(\psi \in C_{b}^{\infty } (\mathbb {R}^{N} )\), kj = 1,…,N, j = 1,…,p.

Proof Proof of Lemma 4

See the proof of Lemma B.1. in [13]. □

Using the Malliavin integration by parts formula, we have

$$ \begin{array}{@{}rcl@{}} && \mathcal{M}_{f} (t,s,x) \\ &= & s^{\iota} \psi (x) E [ (P_{s}^{0,z} f ) (X(t-s,x) ) H_{\gamma} \left( X(t-s,x), G^{\alpha, p, q} (t-s,x) \right)] |_{z=x} \\ &= & s^{\iota} \psi (x) {\int}_{\mathbb{R}^{N}} (P_{s}^{0,z} f ) (y) {}_{\mathbb{D}^{-\infty}}\langle \delta_{y} \left( X(t-s,x) \right), H_{\gamma} \left( X(t-s,x), G^{\alpha, p, q} (t-s,x) \right) \rangle {}_{\mathbb{D}^{\infty}} dy |_{z=x} \\ &= & s^{\iota} \psi (x) {\int}_{\mathbb{R}^{N}} \left( {\int}_{\mathbb{R}^{N}} f (\xi) p^{\bar{X}}_{s} (y , \xi )d \xi \right) {}_{\mathbb{D}^{-\infty}} \langle \delta_{y} \left( X(t-s,x) \right), H_{\gamma} \left( X(t-s,x), G^{\alpha, p, q} (t-s,x) \right) \rangle {}_{\mathbb{D}^{\infty}}dy \\ &= & s^{\iota} \psi (x) {\int}_{\mathbb{R}^{N}} f (\xi) {\int}_{\mathbb{R}^{N}} p^{\bar{X}}_{s} (y , \xi ) {}_{\mathbb{D}^{-\infty}} \langle \delta_{y} \left( X(t-s,x) \right), H_{\gamma} \left( X(t-s,x), G^{\alpha, p, q} (t-s,x) \right) \rangle {}_{\mathbb{D}^{\infty}} dy d \xi, \end{array} $$
(A.10)

where the random variable Gα,p,q(ts,x) is defined as

$$ \begin{array}{@{}rcl@{}} G^{\alpha, p, q} (t - s,x) \!:=\! \prod\limits_{j=1}^{p} \left( X^{k_{j}} (t - s,x) - z_{k_{j}} \right) H_{\alpha} \left( X(t - s, x), g^{\alpha, q} \left( X(t - s, x) \right) \! \! \prod\limits_{j=1}^{2m + 2 \ell + 2 - q } \! \! (X^{\beta_{j}} (t - s,x) - z_{\beta_{j}} ) \right). \end{array} $$

We note that Lemma 2 yields

$$ \begin{array}{@{}rcl@{}} && \left| {\int}_{\mathbb{R}^{N}} p^{\bar{X}}_{s} (y , \xi ) {}_{\mathbb{D}^{-\infty}} \langle \delta_{y} \left( X(t-s,x) \right), H_{\gamma} \left( X(t-s,x), G^{\alpha, p, q} (t-s,x) \right) \rangle {}_{\mathbb{D}^{\infty}} dy \right| \\ &\leq & C \frac{(t-s)^{\frac{2m + 2 \ell +2 -q + p - |\alpha| - |\gamma|}{2}} }{s^{N/2}} \frac{1}{ (t-s)^{N/2}} {\int}_{\mathbb{R}^{N}} \exp \left( -c_{1} \frac{| \xi - y |^{2}}{s} \right) \exp \left( -c_{2} \frac{| y - x |^{2}}{t-s} \right) dy \\ &\leq & C \frac{(t-s)^{\frac{2m + 2 \ell +2 -q + p - |\alpha| - |\gamma|}{2}} }{t^{N/2}} \exp \left( - c \frac{|\xi - x |^{2}}{t} \right) \end{array} $$
(A.11)

for some positive constants C and c, where we used the estimate \(\textstyle { \left \| {\prod }_{j=1}^{\kappa } (X^{l_{j}} (t-s,x) - z_{l_{j}}) \right \|_{k,p} \leq C (t-s)^{\kappa /2}}\) for all \(\kappa , k \in \mathbb {N}\) and p ≥ 2, and Lemma 3 on the last inequality. Therefore, each term of \(\mathcal {E}_{1,t}^{m, \ell } f (x)\) is given in the form of

$$ \begin{array}{@{}rcl@{}} {{\int}_{0}^{t}} \mathcal{M}_{f} (t,s,x) ds = \langle f , \varphi_{t}(x, \cdot) \rangle \end{array} $$
(A.12)

with \(\varphi _{t} :\mathbb {R}^{N} \times \mathbb {R}^{N} \to \mathbb {R}\) satisfying for \(x, \xi \in \mathbb {R}^{N}\),

$$ \begin{array}{@{}rcl@{}} | \varphi_{t} (x , \xi) | &= & \left| {{\int}_{0}^{t}} s^{\iota} \psi (x) {\int}_{\mathbb{R}^{N}} p^{\bar{X}}_{s} (y , \xi ) {}_{\mathbb{D}^{-\infty}} \langle \delta_{y} \left( X(t-s,x) \right), H_{\gamma} \left( X(t-s,x), G^{\alpha, p, q} (t-s,x) \right) \rangle {}_{\mathbb{D}^{\infty}} dy ds \right| \\ &\leq & C_{1} \left| {{\int}_{0}^{t}} s^{\iota} (t-s)^{\frac{2m + 2 \ell +2 -q + p - |\alpha| - |\gamma|}{2}} \frac{1}{t^{N/2}} \exp \left( - c \frac{|\xi - x |^{2}}{t} \right) ds \right| \\ &\leq & C_{2} t^{\frac{2m + 2 \ell +2 -q + p - |\alpha| - |\gamma|}{2} + \iota +1 } \frac{1}{t^{N/2}} \exp \left( - c \frac{|\xi - x |^{2}}{t} \right) \\ &\leq & C_{2} t^{m + \ell + 1} \frac{1}{t^{N/2}} \exp \left( - c \frac{|\xi - x |^{2}}{t} \right) \end{array} $$
(A.13)

for constants C1,C2 > 0 and c > 0 where we used |α|≤ 2, 2ι + p −|γ|≥ i and qi on the last inequality.

1.2 A.2 Step 2: On the error term \(\mathcal {E}_{2,t}^{m,\ell } f(x)\)

From the definition of \(\{P_{t}^{i,z} \}_{t \geq 0}\), we have for t > 0, \(x \in \mathbb {R}^{N}\) and \(f \in \mathcal {S}(\mathbb {R}^{N} )\),

$$ \begin{array}{@{}rcl@{}} && \sum\limits_{i=0}^{2m + 2 \ell + 1 } P_{t}^{i,z} f (x) |_{z=x} = P_{t}^{0,z} f (x) |_{z=x} \\ && + \sum\limits_{i=1}^{2m + 2 \ell + 1 } \sum\limits_{k_{1} + {\cdots} + k_{i} =i}^{2m + 2 \ell + 1} {{\int}_{0}^{t}} {\int}_{t_{i}}^{t} {\cdots} {\int}_{t_{2}}^{t} P_{t_{i}}^{0,z} \mathscr{L}_{k_{1}}^{z} P_{t_{i-1} - t_{i}}^{0,z} \mathscr{L}_{k_{2}}^{z} {\cdots} \mathscr{L}_{k_{i}}^{z} P_{t-t_{1}}^{0,z} f (x) dt_{1} {\cdots} d t_{i} |_{z=x}. \end{array} $$
(A.14)

Then, we recursively apply the following Baker-Campbell-Hausdorff formula to the integrand of (A.14) so that we split the term into computation part and error part \(\mathcal {E}_{2,t}^{m, \ell } f(x)\).

Lemma 2 (Baker-Campbell-Hausdorff formula)

Let 0 < s < t ≤ 1, \(i \in \mathbb {N}\) and \(\widehat {{\mathscr{L}}}_{i} \in \mathcal {DO}\) be a differential operator of the form \(\widehat {{\mathscr{L}}}_{i} =c \psi _{i}(\cdot ) \partial ^{\beta }\) where c is a constant, ψi(⋅) is a polynomial of the degree at most i and β is a partial derivative with a multi-index β ∈{1,⋯ ,N}, \(\ell \in \mathbb {N}\). Then we have the explicit formula:

$$ \begin{array}{@{}rcl@{}} P_{s}^{0,z} \widehat{\mathscr{L}}_{i} P_{t-s}^{0,z}\varphi(\cdot) =\sum\limits_{k=0}^{i} \frac{s^{k}}{k!} {{\underbrace{[\mathscr{L}_{0}^{z}, [\cdots [\mathscr{L}_{0}^{z},[\mathscr{L}_{0}^{z},\widehat{\mathscr{L}}_{i}]]\cdots]]}_{k - \text{times} }}} P_{t}^{0,z}\varphi(\cdot), \end{array} $$
(A.15)

for any \(\varphi \in \mathcal {S}(\mathbb {R}^{N}) \), where \({{\underbrace { [{\mathscr{L}}_{0}^{z}, [{\cdots } [{\mathscr{L}}_{0}^{z},[{\mathscr{L}}_{0}^{z},\widehat {{\mathscr{L}}}_{i}]]\cdots ]]}_{0 - \text {times}}}} \equiv \widehat {{\mathscr{L}}_{i}}\).

Proof Proof of Lemma 5

See the proof of Proposition 2.1 in [13]. □

By Lemma 5, we have

$$ \begin{array}{@{}rcl@{}} && P_{t_{i}}^{0,z} \mathscr{L}_{k_{1}}^{z} P_{t_{i-1} - t_{i}}^{0,z} \mathscr{L}_{k_{2}}^{z} {\cdots} \mathscr{L}_{k_{i}}^{z} P_{t-t_{1}}^{0,z} f (x) \\ &= & \sum\limits_{\alpha = 0}^{k_{1}} \frac{(t_{i})^{\alpha}}{ \alpha !} {{\underbrace{ [\mathscr{L}_{0}^{z}, [{\cdots} [\mathscr{L}_{0}^{z},[\mathscr{L}_{0}^{z},\mathscr{L}_{k_{1}}^{z}]]\cdots]]}_{\alpha - \text{times}}}} P_{t_{i-1}}^{0,z} \mathscr{L}_{k_{2}}^{z} P_{t_{i-2} - t_{i-1}}^{0,z} \mathscr{L}_{k_{3}}^{z} {\cdots} \mathscr{L}_{k_{i}}^{z} P_{t-t_{1}}^{0,z} f (x) \\ &= & \\ && {\vdots} \\ &=& \prod\limits_{l=1}^{i} \left( \sum\limits_{\alpha =0}^{k_{l}} \frac{(t_{i+1-l})^{\alpha} }{\alpha !} {{\underbrace{ [\mathscr{L}_{0}^{z}, [{\cdots} [\mathscr{L}_{0}^{z},[\mathscr{L}_{0}^{z},\mathscr{L}_{k_{l}}^{z}]]\cdots]]}_{\alpha - \text{times}}}} \right) (P_{t}^{0,z} f )(x) \\ &= & \sum\limits_{\begin{array}{cc}0 {\leq} \alpha_{1} {\leq} k_{1} \\ {\cdots} \\ 0 {\leq} \alpha_{i} {\leq} k_{i} \end{array}} \frac{(t_{1})^{\alpha_{1}} {\cdots} (t_{i})^{\alpha_{i}}}{(\alpha_{1})! {\cdots} (\alpha_{i})!} \left( \prod\limits_{l=1}^{i} {{\underbrace{ [\mathscr{L}_{0}^{z}, [\cdots [\mathscr{L}_{0}^{z},[\mathscr{L}_{0}^{z},\mathscr{L}_{k_{l}}^{z}]]\cdots]]}_{\alpha_{l} - \text{times}}}} \right) (P_{t}^{0,z} f )(x). \end{array} $$
(A.16)

Thus, it follows that

$$ \begin{array}{@{}rcl@{}} && \sum\limits_{i=0}^{2m + 2 \ell + 1 } P_{t}^{i,z} f (x) |_{z=x} = P_{t}^{0,z} f(x) |_{z=x} \\ && + \sum\limits_{i=1}^{2m + 2 \ell + 1 } \sum\limits_{k_{1} + {\cdots} + k_{i} =i}^{2m + 2 \ell + 1} \sum\limits_{\begin{array}{cc}0 {\leq} \alpha_{1} {\leq} k_{1} \\ {\cdots} \\ 0 {\leq} \alpha_{i} {\leq} k_{i} \end{array}} \frac{t^{{\sum}_{j=1}^{i} \alpha_{j} + i}}{(\alpha_{1})! {\cdots} (\alpha_{i})!} I (\alpha ) \left( \prod\limits_{j=1}^{i} {{\underbrace{ [\mathscr{L}_{0}^{z}, [{\cdots} [\mathscr{L}_{0}^{z},[\mathscr{L}_{0}^{z},\mathscr{L}_{k_{j}}^{z}]]\cdots]]}_{\alpha_{j} - \text{times}}}} \right) (P_{t}^{0,z} f )(x) |_{z=x} \\ &= & P_{t}^{0,z} f(x) |_{z=x} \\ && + \sum\limits_{i=1}^{m -1 } {\sum}_{k_{1} + {\cdots} + k_{i} =i}^{2m + 2 \ell + 1} \sum\limits_{\substack{1 \leq \alpha_{1} \leq k_{1} \\ 0 \leq \alpha_{2} \leq k_{2} \\ {\cdots} \\ 0 \leq \alpha_{i} \leq k_{i}}} \frac{t^{{\sum}_{j=1}^{i} \alpha_{j} + i}}{(\alpha_{1})! {\cdots} (\alpha_{i})!} I (\alpha ) \left( \prod\limits_{j=1}^{i} {{\underbrace{ [\mathscr{L}_{0}^{z}, [{\cdots} [\mathscr{L}_{0}^{z},[\mathscr{L}_{0}^{z},\mathscr{L}_{k_{j}}^{z}]]\cdots]]}_{\alpha_{j} - \text{times}}}} \right) (P_{t}^{0,z} f )(x) |_{z=x} \\ && + \sum\limits_{i=m}^{2m + 2 \ell + 1 } {\sum}_{k_{1} + {\cdots} + k_{i} =i}^{2m + 2 \ell + 1} \sum\limits_{\begin{array}{cc}1 {\leq} \alpha_{1} {\leq}k_{1} \\ 0 \leq \alpha_{2} {\leq} k_{2} \\ {\cdots} \\ 0 {\leq} \alpha_{i} {\leq} k_{i} \end{array}} \frac{t^{{\sum}_{j=1}^{i} \alpha_{j} + i}}{(\alpha_{1})! {\cdots} (\alpha_{i})!} I (\alpha ) \left( \prod\limits_{j=1}^{i} {{\underbrace{ [\mathscr{L}_{0}^{z}, [{\cdots} [\mathscr{L}_{0}^{z},[\mathscr{L}_{0}^{z},\mathscr{L}_{k_{j}}^{z}]]\cdots]]}_{\alpha_{j} - \text{times}}}} \right) (P_{t}^{0,z} f )(x) |_{z=x} \\ &=: & P_{t}^{0,z} f(x) |_{z=x} + B_{1} + B_{2}, \end{array} $$
(A.17)

where I(α) is defined by (??). Note that the above summation is taken for α1 = 1,…,k1 (does not include 0) since

$$ \begin{array}{@{}rcl@{}} {\left( \prod\limits_{j=1}^{i} {{\underbrace{ [\mathscr{L}_{0}^{z}, [\cdots [\mathscr{L}_{0}^{z},[\mathscr{L}_{0}^{z},\mathscr{L}_{k_{j}}^{z}]]\cdots]]}_{\alpha_{j} - \text{times}}}} \right) (P_{t}^{0,z} f )(x) |_{z=x}} = 0 \end{array} $$
(A.18)

whenever α1 = 0. Furthermore, the term B1 is decomposed as

$$ \begin{array}{@{}rcl@{}} B_{1}& = & \sum\limits_{i=1}^{m -1 } \sum\limits_{k_{1} + {\cdots} + k_{i} =i}^{2m + 2 \ell + 1} \sum\limits_{\begin{array}{cc}1 {\leq} \alpha_{1} {\leq} k_{1} \\ 0 {\leq} \alpha_{2} {\leq} k_{2} \\ {\cdots} \\ 0 {\leq} \alpha_{i} {\leq} k_{i} \\ {\sum}_{j=1}^{i} \alpha_{j} {+} i \leq m \end{array}} \frac{t^{{\sum}_{j=1}^{i} \alpha_{j} + i}}{(\alpha_{1})! \cdots (\alpha_{i})!} I (\alpha ) \left( \prod\limits_{j=1}^{i} {{\underbrace{ [\mathscr{L}_{0}^{z}, [{\cdots} [\mathscr{L}_{0}^{z},[\mathscr{L}_{0}^{z},\mathscr{L}_{k_{j}}^{z}]]\cdots]]}_{\alpha_{j} - \text{times}}}} \right) (P_{t}^{0,z} f )(x) |_{z=x} \end{array} $$
$$ \begin{array}{@{}rcl@{}} && \!+ \sum\limits_{i=1}^{m -1 } \sum\limits_{k_{1} + {\cdots} + k_{i} =i}^{2m + 2 \ell + 1} \sum\limits_{\begin{array}{cc}1 {\leq} \alpha_{1} {\leq} k_{1} \\ 0 {\leq} \alpha_{2} {\leq} k_{2} \\ {\cdots} \\ 0 {\leq} \alpha_{i} {\leq} k_{i} \\ {\sum}_{j=1}^{i} \alpha_{j} {+} i > m \end{array}} \frac{t^{{\sum}_{j=1}^{i} \alpha_{j} + i}}{(\alpha_{1})! {\cdots} (\alpha_{i})!} I (\alpha ) \left( \prod\limits_{j=1}^{i} {{\underbrace{ [\mathscr{L}_{0}^{z}, [{\cdots} [\mathscr{L}_{0}^{z},[\mathscr{L}_{0}^{z},\mathscr{L}_{k_{j}}^{z}]]\cdots]]}_{\alpha_{j} - \text{times}}}} \right) (P_{t}^{0,z} f )(x) |_{z=x} \\ & = & {\sum}_{i=1}^{m -1 } {\sum}_{k_{1} + {\cdots} + k_{i} =i}^{2m + 1} \sum\limits_{\begin{array}{cc}1 {\leq} \alpha_{1} {\leq} k_{1} \\ 0 {\leq} \alpha_{2} {\leq} k_{2} \\ {\cdots} \\ 0 {\leq} \alpha_{i} {\leq} k_{i} \\ {\sum}_{j=1}^{i} \alpha_{j} {+} i \leq m \end{array}} \frac{t^{{\sum}_{j=1}^{i} \alpha_{j} + i}}{(\alpha_{1})! {\cdots} (\alpha_{i})!} I (\alpha ) \left( \prod\limits_{j=1}^{i} {{\underbrace{ [\mathscr{L}_{0}^{z}, [{\cdots} [\mathscr{L}_{0}^{z},[\mathscr{L}_{0}^{z},\mathscr{L}_{k_{j}}^{z}]]\cdots]]}_{\alpha_{j} - \text{times}}}} \right) (P_{t}^{0,z} f )(x) |_{z=x} \\ & &\!+ \sum\limits_{i=1}^{m -1 } \sum\limits_{k_{1} + {\cdots} + k_{i} =i}^{2m + 2 \ell + 1} \sum\limits_{\begin{array}{cc}1 {\leq} \alpha_{1} {\leq} k_{1} \\ 0 {\leq} \alpha_{2} {\leq} k_{2} \\ {\cdots} \\ 0 {\leq} \alpha_{i} {\leq} k_{i} \\ {\sum}_{j=1}^{i} \alpha_{j} {+} i > m \end{array}} \frac{t^{{\sum}_{j=1}^{i} \alpha_{j} + i}}{(\alpha_{1})! {\cdots} (\alpha_{i})!} I (\alpha ) \left( \prod\limits_{j=1}^{i} {{\underbrace{ [\mathscr{L}_{0}^{z}, [{\cdots} [\mathscr{L}_{0}^{z},[\mathscr{L}_{0}^{z},\mathscr{L}_{k_{j}}^{z}]]\cdots]]}_{\alpha_{j} - \text{times}}}} \right) (P_{t}^{0,z} f )(x) |_{z=x} \\ &\!=:\! & B_{1,1} + B_{1,2}. \end{array} $$
(A.19)

Since \(P_{t}^{0,z} f(x)\) is represented as

$$ \begin{array}{@{}rcl@{}} P_{t}^{0,z} f(x) = {\int}_{\mathbb{R}^{N}} f (y) {}_{\mathbb{D}^{-\infty}} \langle \delta_{y} (\bar{X}^{z} (t,x) ) , 1 \rangle {}_{\mathbb{D}^{\infty}} dy = \langle f, p^{\bar{X}^{z}}_{t} (x, \cdot) \rangle, \end{array} $$
(A.20)

we see that \( P_{t}^{0,z} f(x) |_{z=x} + B_{1,1} = \langle f, {\vartheta ^{m}_{t}} (x, \cdot ) \rangle \) from the definition of the weight function \(\vartheta _{t}^{(m)} (x, \cdot )\) in (??). Here, we also define \(\mathcal {E}_{2,t}^{m, \ell } f(x) := B_{1,2} + B_{2}\). Thus,

$$ \begin{array}{@{}rcl@{}} \mathcal{E}_{2,t}^{m, \ell} f(x) &= & t^{m+1}\sum\limits_{i=1}^{{j}(m,\ell)} C_{\alpha^{i}}(t,x) \partial^{\alpha^{i}} (P_{t}^{0,z} f) (x) |_{z=x} \\ &= & t^{m+1}\sum\limits_{i=1}^{{j}(m,\ell)} C_{\alpha^{i}}(t,x) {\int}_{\mathbb{R}^{N}} f (y ) \partial^{\alpha^{i}} p_{t}^{\bar{X}^{z}} (\cdot, y) (x) dy |_{z=x} \\ &= & t^{m+1}\sum\limits_{i=1}^{{j}(m,\ell)} C_{\alpha^{i}}(t,x) {\int}_{\mathbb{R}^{N}} f (y ) \partial^{\alpha^{i}} p_{t}^{\bar{X}} (x, \cdot ) (y) dy \\ &= & t^{m+1}\sum\limits_{i=1}^{{j}(m,\ell)} C_{\alpha^{i}}(t,x) \langle \partial^{\alpha^{i}} f , p_{t}^{\bar{X}} (x, \cdot) \rangle, \end{array} $$
(A.21)

with some integer \({j}(m,\ell ) \in \mathbb {N}\), multi-indices αi, i = 1,⋯ ,j(m,) and bounded functions \(C_{\alpha ^{i}}:[0,1] \times \mathbb {R}^{N} \rightarrow \mathbb {R}\), where we used \(\partial _{x_{i}} p^{\bar {X}^{z}} (x, y) = \partial _{y_{i}} p^{\bar {X}^{z}} (x, y), i=1,\ldots , N\) and integration by parts.

Appendix B. Proof of Lemma 2

2.1 B.1 Proof of (??)

For the simplicity, we denote by Bj− 1,j the Brownian increment BjT/nB(j− 1)T/n and define

$$ \begin{array}{@{}rcl@{}} \pi_{T/n}^{m, j} &:= & \pi_{T/n}^{m, \bar{X}^{\text{EM}, (n), x}_{(j-1)T/n}} (B_{jT/n} - B_{(j-1)T/n} ), \end{array} $$
(B.1)
$$ \begin{array}{@{}rcl@{}} \mathscr{W}_{T/n}^{m, k} &:= & \prod\limits_{j=1}^{k} (1 + \pi_{T/n}^{m, \bar{X}^{\text{EM}, (n), x}_{(j-1)T/n}} (B_{jT/n} - B_{(j-1)T/n} ) ) \end{array} $$
(B.2)

for j,k = 1, 2,…,n. Then, we will show that for all \(j \in \mathbb {N}\) and p > 1, there exists a constant C(T) such that

$$ \begin{array}{@{}rcl@{}} \| \mathscr{W}_{T/n}^{m, k} \|_{j, p}^{p} := E [| \mathscr{W}_{T/n}^{m, k} |^{p} ] + \sum\limits_{i=1}^{j} E [ \| D^{i} \mathscr{W}_{T/n}^{m, k} \|_{H^{\otimes i}}^{p} ] \leq & C(T), \end{array} $$
(B.3)

for k = 1,…,n where Di means the i-th order Malliavin derivative. Especially we consider the case p = 2e,e ≥ 1 and j = 1. According to [13], it holds that for all k = 1,…,n

$$ \begin{array}{@{}rcl@{}} E [| \mathscr{W}_{T/n}^{m, k} |^{p} ] \leq \left( 1 + c \frac{T}{n} \right)^{k} \end{array} $$
(B.4)

for some constant c > 0. Then, it suffices to show that

$$ \begin{array}{@{}rcl@{}} E [ \| D \mathscr{W}_{T/n}^{m, k} \|_{H}^{p} ] \leq & C(T). \end{array} $$
(B.5)

First, we have from the triangle inequality of Lp(Ω) norm

$$ \begin{array}{@{}rcl@{}} E [ \| D \mathscr{W}_{T/n}^{m, k} \|_{H}^{p} ] &= & E \left[ \left( \sum\limits_{j=1}^{d} {{\int}_{0}^{T}} \left( D_{j, t} \mathscr{W}_{T/n}^{m, k} \right)^{2} dt \right)^{e} \right] \\ &\leq & \left( \sum\limits_{j=1}^{d} \left\| {{\int}_{0}^{T}} \left( D_{j, t} \mathscr{W}_{T/n}^{m, k} \right)^{2} dt \right\|_{e} \right)^{e} \\ &\leq & T^{e-1} \left( \sum\limits_{j=1}^{d} \left\| \left( {{\int}_{0}^{T}} \left( D_{j, t} \mathscr{W}_{T/n}^{m, k} \right)^{2e} dt \right)^{1/e} \right\|_{e} \right)^{e} \end{array} $$
(B.6)

where we applied the Hölder’s inequality to the time integral on the last inequality. In what follows, using the argument of induction with respect to k = 1,…,n, which is the number of product of Malliavin weights, we show that there exists a constant C > 0 such that for any j = 1,…,d and m ≥ 2,

$$ \begin{array}{@{}rcl@{}} E \left[ {{\int}_{0}^{T}} \left( D_{j, t} \mathscr{W}_{T/n}^{m, k} \right)^{2e} dt \right] \leq \left( 1 + C \frac{T}{n} \right)^{k}. \end{array} $$
(B.7)

Throughout the proof, the following two results play an important role:

  1. 1.

    \({B_{t}^{1}}, \ldots , {B_{t}^{d}}\) are independent and for j = 1,…,d and t > 0

    $$ \begin{array}{@{}rcl@{}} E[({B_{t}^{j}})^{r} ] = \begin{cases} 0 & (r : \text{odd}) \\ \frac{r!}{2^{r/2}(r/2)!}t^{r/2} & (r : \text{even}). \end{cases} \end{array} $$
    (B.8)
  2. 2.

    The weight \(\pi _{T/n}^{m, j}\) is represented as

    $$ \begin{array}{@{}rcl@{}} \pi_{T/n}^{m, j} &= & \sum\limits_{i_{1},i_{2},i_{3} = 1}^{d} V_{(i_{1}, i_{2}, i_{3})} (\bar{X}^{\text{EM}, (n), x}_{(j-1)T/n}) \left( \frac{T}{n} \right)^{-1} \\ &&\times \{ B_{j-1, j}^{i_{1}} B_{j-1, j}^{i_{2}} B_{j-1, j}^{i_{3}} - B_{j-1, j}^{i_{1}} \frac{T}{n} 1_{i_{2} = i_{3}} - B_{j-1, j}^{i_{2}} \frac{T}{n} 1_{i_{3} = i_{1}} \\ &&- B_{j-1,j}^{i_{3}} \frac{T}{n} 1_{i_{2} = i_{1}} \} + r_{T/n}^{m}(\bar{X}^{\text{EM}, (n), x}_{(j-1)T/n}, B_{j-1,j}) , \end{array} $$
    (B.9)

    where \(V_{(i_{1}, i_{2}, i_{3})} \in C_{b}^{\infty } (\mathbb {R}^{N})\), the function \(r_{T/n}^{m} : \mathbb {R}^{N} \times \mathbb {R}^{d} \to \mathbb {R}\) satisfies \(r_{T/n}^{m} (\cdot , \xi ) \in C_{b}^{\infty } (\mathbb {R}^{N})\) for any \(\xi \in \mathbb {R}^{d}\) and the random variable \(\textstyle {r_{T/n}^{m}(\bar {X}^{\text {EM}, (n), x}_{(j-1)T/n}, B_{j-1,j} )}\) satisfies for any q ≥ 1, \(\| r_{T/n}^{m} (\bar {X}^{\text {EM}, (n), x}_{(j-1)T/n}, B_{j-1,j} ) \|_{q} \leq c T/n\) for some c > 0.

Then, for k = 1 it is easy to see that there exists a positive constant C such that

$$ \begin{array}{@{}rcl@{}} E \left[ {{\int}_{0}^{T}} \left( D_{j, t} \mathscr{W}_{T/n}^{m, 1} \right)^{2e} dt \right] = E \left[ {{\int}_{0}^{T}} \left( D_{j, t} \pi_{T/n}^{m, 1} \right)^{2e} dt \right] \leq 1 + C T/n. \end{array} $$
(B.10)

Now, we assume that for \(k=1,2, \ldots , l, l \in \mathbb {N}\) the bound (B.7) holds. By the chain rule of Malliavin derivative, one has

$$ \begin{array}{@{}rcl@{}} E \left[ {{\int}_{0}^{T}} \left( D_{j, t} \mathscr{W}_{T/n}^{m, l+1} \right)^{2e} dt \right]& = & E \left[ {{\int}_{0}^{T}} \left( (1 + \pi_{T/n}^{m, l+1}) D_{j, t} \mathscr{W}_{T/n}^{m, l} + \mathscr{W}_{T/n}^{m, l} D_{j, t} \pi_{T/n}^{m, l+1} \right)^{2e} dt \right] \\ &= & E \left[ {\int}_{0}^{l T/n} \left( (1 + \pi_{T/n}^{m, l+1}) D_{j, t} \mathscr{W}_{T/n}^{m, l} + \mathscr{W}_{T/n}^{m, l} D_{j, t} \pi_{T/n}^{m, l+1} \right)^{2e} dt \right] \\ && + E \left[ {\int}_{lT/n}^{(l+1) T/n} \left( \mathscr{W}_{T/n}^{m, l} D_{j, t} \pi_{T/n}^{m, l+1} \right)^{2e} dt \right] =:F_{1} + F_{2} \end{array} $$
(B.11)

where we used \(D_{j, t} {\mathscr{W}}_{T/n}^{m, l} = 0\) for tlT/n on the second equality.

For the second term of (B.11), we have

$$ \begin{array}{@{}rcl@{}} F_{2} &=& E \left[ (\mathscr{W}_{T/n}^{m, l} )^{2e} {\int}_{lT/n}^{(l+1) T/n} \left( D_{j, t} \pi_{T/n}^{m, l+1} \right)^{2e} dt \right] \\ &=& E \left[ (\mathscr{W}_{T/n}^{m, l} )^{2e} E \left[ {\int}_{lT/n}^{(l+1) T/n} \left( D_{j, t} \pi_{T/n}^{m, l+1} \right)^{2e} dt \left. \right| \mathcal{F}_{lT/n} \right] \right] \leq C \frac{T}{n} E \left[ (\mathscr{W}_{T/n}^{m, l} )^{2e} \right] \leq C \frac{T}{n} \left( 1 + c \frac{T}{n} \right)^{l}\\ \end{array} $$
(B.12)

for some constants C > 0 and c > 0, where we used (B.4) and

$$ \begin{array}{@{}rcl@{}} E \left[ {\int}_{lT/n}^{(l+1) T/n} \left( D_{j, t} \pi_{T/n}^{m, l+1} \right)^{2e} dt \left. \right| \mathcal{F}_{lT/n} \right] \leq C \frac{T}{n}. \end{array} $$
(B.13)

Moreover, the binomial expansion of integrand of time integral in F1 gives

$$ \begin{array}{@{}rcl@{}} F_{1} &= & E \left[ {\int}_{0}^{l T/n} \left\{ (1 + \pi_{T/n}^{m, l+1}) D_{j, t} \mathscr{W}_{T/n}^{m, l} \right\}^{2e} dt \right] \\ && + \sum\limits_{i=1}^{2e-1} \begin{pmatrix} 2e \\ i \end{pmatrix} E \left[ {\int}_{0}^{l T/n} \left\{ (1 + \pi_{T/n}^{m, l+1}) D_{j, t} \mathscr{W}_{T/n}^{m, l} \right\}^{2e - i} (\mathscr{W}_{T/n}^{m, l} D_{j, t} \pi_{T/n}^{m, l+1} )^{i} dt \right] \\ & &+ E \left[ {\int}_{0}^{l T/n} (\mathscr{W}_{T/n}^{m, l} D_{j, t} \pi_{T/n}^{m, l+1} )^{2e} dt \right] =: F_{1,1} + F_{1,2} + F_{1,3}. \end{array} $$
(B.14)

From now on, let us estimate the terms F1,1,F1,2 and F1,3. The upper bound of F1,1 and F1,3 are given as follows.

$$ \begin{array}{@{}rcl@{}} F_{1,1} &= & E \left[ {\int}_{0}^{l T/n} (D_{j, t} \mathscr{W}_{T/n}^{m, l} )^{2e} dt E \left[ (1 + \pi_{T/n}^{m, l+1})^{2e} \left. \right| \mathcal{F}_{l T/n} \right] \right] \\ &\leq & \left( 1 + C_{1} \frac{T}{n} \right) E \left[ {\int}_{0}^{l T/n} (D_{j, t} \mathscr{W}_{T/n}^{m, l} )^{2e} dt \right] \leq \left( 1 + C_{1} \frac{T}{n} \right)^{l+1}, \end{array} $$
(B.15)

and

$$ \begin{array}{@{}rcl@{}} F_{1,3}& = & E \left[ \left( \mathscr{W}_{T/n}^{m, l} \right)^{2e} E \left[ {\int}_{0}^{l T/n} (D_{j, t} \pi_{T/n}^{m, l+1} )^{2e} dt \left. \right| \mathcal{F}_{lT/n} \right] \right] \\ &\leq & C_{2} \frac{T}{n} E[ \left( \mathscr{W}_{T/n}^{m, l} \right)^{2e} ] \leq \left( 1 + C_{2} \frac{T}{n} \right)^{l+1}, \end{array} $$
(B.16)

for some positive constants C1 and C2. Finally, let us consider the term F1,2. We have

$$ \begin{array}{@{}rcl@{}} |F_{1,2} | &\leq & \sum\limits_{i=1}^{2e-1} \begin{pmatrix} 2e \\ i \end{pmatrix} \left| E \left[ {\int}_{0}^{l T/n} \left\{ (1 + \pi_{T/n}^{m, l+1}) D_{j, t} \mathscr{W}_{T/n}^{m, l} \right\}^{2e - i} (\mathscr{W}_{T/n}^{m, l} D_{j, t} \pi_{T/n}^{m, l+1} )^{i} dt \right] \right| \\ &\leq & \sum\limits_{i=1}^{2e-1} \begin{pmatrix} 2e \\ i \end{pmatrix} E \left[ \left| \mathscr{W}_{T/n}^{m, l} \right|^{i} {\int}_{0}^{l T/n} \left| D_{j, t} \mathscr{W}_{T/n}^{m, l} \right|^{2e-i} | E \left[ (1 + \pi_{T/n}^{m, l+1} )^{2e - i} (D_{j, t} \pi_{T/n}^{m, l+1} )^{i} \left. \right| \mathcal{F}_{lT/n} \right] | dt \right] \\ &\leq & C \left( \frac{T}{n} \right)\sum\limits_{i=1}^{2e-1} E \left[ \left| \mathscr{W}_{T/n}^{m, l} \right|^{i} {\int}_{0}^{l T/n} \left| D_{j, t} \mathscr{W}_{T/n}^{m, l} \right|^{2e-i} \left| G_{j,t}^{(l)} \right| dt \right], \end{array} $$
(B.17)

where \((G_{j,t}^{(l)})_{t \geq 0}\) is a stochastic process containing \(D_{j,t} \bar {X}^{\text {EM}, (n), x, i}_{l T/n}, i=1,\ldots , N\), partial derivatives of \(V_{(i_{1}, i_{2}, i_{3})}(\bar {X}^{\text {EM}, (n), x}_{lT/n} )\), i1,i2,i3 = 1,…,d and \(r_{T/n}^{m} (\bar {X}^{\text {EM}, (n), x}_{l T/n}, B_{l,l+1} )\). Here, applying Hölder’s inequality to the time integral in (B.17) with Hölder’s conjugates \(p^{\prime }= 2e/(2e-i) \geq 1\) and \(q^{\prime } = 2e/i \geq 1\), i = 1,…, 2e − 1, we obtain

$$ \begin{array}{@{}rcl@{}} && E \left[ \left| \mathscr{W}_{T/n}^{m, l} \right|^{i} {\int}_{0}^{l T/n} \left| D_{j, t} \mathscr{W}_{T/n}^{(m), l} \right|^{2e-i} \left| G_{j,t}^{(l)} \right| dt \right] \\ &\leq & E \left[ \left| \mathscr{W}_{T/n}^{m, l} \right|^{i} \left( {\int}_{0}^{l T/n} \left| D_{j, t} \mathscr{W}_{T/n}^{m, l} \right|^{2e} dt \right)^{1/p^{\prime}} \left( {\int}_{0}^{lT/n} \left| G_{j,t}^{(l)} \right|^{q^{\prime}} dt \right)^{1/q^{\prime}} \right] \\ &\leq & \left\| \left( {\int}_{0}^{l T/n} \left| D_{j, t} \mathscr{W}_{T/n}^{m, l} \right|^{2e} dt \right)^{1/p^{\prime}} \right\|_{p^{\prime}} \left\| \left| \mathscr{W}_{T/n}^{m, l} \right|^{i} \left( {\int}_{0}^{lT/n} \left| G_{j,t}^{(l)} \right|^{q^{\prime}} dt \right)^{1/q^{\prime}} \right\|_{q^{\prime}} \\ &\leq & \left\| \left( {\int}_{0}^{l T/n} \left| D_{j, t} \mathscr{W}_{T/n}^{m, l} \right|^{2e} dt \right)^{1/p^{\prime}} \right\|_{p^{\prime}} \left\| \left| \mathscr{W}_{T/n}^{m, l} \right|^{i} \right\|_{2q^{\prime}} \left\| \left( {\int}_{0}^{lT/n} \left| G_{j,t}^{(l)} \right|^{q^{\prime}} dt \right)^{1/q^{\prime}} \right\|_{2q^{\prime}} \\ &\leq & \left( 1 + C_{1} \frac{T}{n} \right)^{l/ p^{\prime}} \times \left( 1 + C_{2} \frac{T}{n} \right)^{l/(2q^{\prime})} \times C \\ &\leq & C \left( 1 + c \frac{T}{n} \right)^{l(1/p^{\prime} + 1/q^{\prime})} = C \left( 1 + c \frac{T}{n} \right)^{l},\ \end{array} $$
(B.18)

for some positive constants C1,C2,C and c where on the fourth inequality we used the assumption of induction (B.7), the bound (B.4) and

$$ \begin{array}{@{}rcl@{}} E \left[ \left( {\int}_{0}^{lT/n} \left| G_{j,t}^{(l)} \right|^{q^{\prime}} dt \right)^{2} \right] \leq C \end{array} $$
(B.19)

which comes from the boundedness of functions \(V_{i_{1},i_{2}, i_{3}}\) and \(r_{T/n}^{m}(\cdot , \xi )\) for any \(\xi \in \mathbb {R}^{d}\), and for any \(k \in \mathbb {N}\) and p ≥ 1, \(\textstyle { \left \| D \bar {X}^{\text {EM}, (n), x, i}_{l T/n} \right \|_{k,p}} \leq c\) with some constant c > 0. Hence, we see that the bound (B.7) holds when k = l + 1. For the higher order Malliavin derivative Di,i ≥ 2, we are able to apply the above discussion in the same way and reach to the conclusion. \(\Box \)

2.2 B.2 Proof of (??)

Using Hölder’s inequality, we have

$$ \begin{array}{@{}rcl@{}} && \left| E[ H^{y} (\bar{X}_{s}^{\text{EM},(n),x}) H_{\alpha}(\bar{X}_{s}^{\text{EM},(n),x}, {\prod}_{i=1}^{k} (1+{\pi}_{T/n}^{m,\bar{X}_{(i-1)T/n}^{\text{EM},(n),x}}(B_{iT/n}-B_{(i-1)T/n})) ) \right| \\ &\!\leq\! & \left\| H^{y} (\bar{X}_{s}^{\text{EM},(n),x}) \right\|_{2} \left\| H_{\alpha}(\bar{X}_{s}^{\text{EM},(n),x}, {\prod}_{i=1}^{k} (1+{\pi}_{T/n}^{m,\bar{X}_{(i-1)T/n}^{\text{EM},(n),x}}(B_{iT/n}-B_{(i-1)T/n})) ) \right\|_{2} \\ &\!\leq\! & C (T) \left\| H^{y} (\bar{X}_{s}^{\text{EM},(n),x}) \right\|_{2} s^{- \frac{|\alpha|}{2}}, \end{array} $$
(B.20)

where we applied the bound (??), \(\| \bar {X}_{s}^{\text {EM},(n),x} \|_{j,q}, j \in \mathbb {N}, q \geq 1\) and the Kusuoka-Stroock estimate [17] for the Malliavin covariance matrix. In order to complete the proof, let us show that

$$ \begin{array}{@{}rcl@{}} \left\| H^{y} (\bar{X}_{s}^{\text{EM},(n),x}) \right\|_{2} \leq C (T ) e^{-c | y -x |^{2} / s}. \end{array} $$
(B.21)

Using the upper bound of the density \(p^{\bar {X}_{s}^{\text {EM},(n),x}}(x, \xi ), \xi \in \mathbb {R}^{N}\), we have

$$ \begin{array}{@{}rcl@{}} E \left[ \left| H^{y} (\bar{X}_{s}^{\text{EM},(n),x} ) \right|^{2} \right] = E \left[ \left| H^{y} (\bar{X}_{s}^{\text{EM},(n),x} ) \right| \right] &\leq & \frac{K(T)}{s^{N/2}} {\int}_{\mathbb{R}^{N}} H^{y} (\xi) e^{-c | \xi -x |^{2} /s } d \xi \\ &\leq & K(T) \prod\limits_{i=1}^{N} \frac{1}{\sqrt{s}} {\int}_{\mathbb{R}^{N}} H^{y_{i}} (\xi_{i}) e^{-c | \xi_{i} -x_{i} |^{2} /s } d \xi_{i} \end{array} $$
(B.22)

for some non-decreasing function K(⋅). For the case \(y_{i} -x_{i} \leq \sqrt {s}\), we have

$$ \frac{1}{\sqrt{s}} {\int}_{\mathbb{R}^{N}} H^{y_{i}} (\xi_{i}) e^{-c | \xi_{i} -x_{i} |^{2} /s } d \xi_{i} \leq C = C e^{- |y_{i} -x_{i} |^{2}/s} e^{|y_{i} -x_{i} |^{2}/s} \leq C e^{- |y_{i} -x_{i} |^{2}/s}, $$
(B.23)

for some positive constant C. Though we are not able to apply the above discussion in the case \(y_{i} -x_{i} \geq \sqrt {s}\), we still have

$$ \begin{array}{@{}rcl@{}} \frac{1}{\sqrt{s}} {\int}_{\mathbb{R}^{N}} H^{y_{i}} (\xi_{i}) e^{-c | \xi_{i} -x_{i} |^{2} /s } d \xi_{i} &= & \frac{1}{\sqrt{s}} {\int}_{y_{i} - x_{i}}^{\infty} e^{-c z^{2} /s } d z \\ &\leq & \frac{1}{\sqrt{s}} {\int}_{y_{i} - x_{i}}^{\infty} \frac{z}{y_{i} - x_{i}} e^{-c z^{2} /s } d z \leq C e^{- c |y_{i} -x_{i} |^{2}/s} \end{array} $$
(B.24)

for some constant C > 0. Hence, the inequality (B.21) holds. \(\Box \)

Appendix C. Proof of Lemma 1

Substituting m = 2 into (??), we have

$$ \begin{array}{@{}rcl@{}} E[ \delta_{y}(\bar{X}(t,x) ) (1+ \pi_{t}^{2,x}(B_{t}))] &= & E[ \delta_{y}(\bar{X}^{z}(t,x) ) ] |_{z=x} + \sum\limits_{i=1}^{5} \frac{t^{2}}{2} [ \mathscr{L}_{0}^{z}, \mathscr{L}_{i}^{z}] E[ \delta_{y}(\bar{X}^{z}(t,x) ) ] |_{z=x} \\ &= & E[ \delta_{y}(\bar{X}^{z}(t,x) ) ] |_{z=x} + \sum\limits_{i=1}^{2} \frac{t^{2}}{2} [ \mathscr{L}_{0}^{z}, \mathscr{L}_{i}^{z}] E[ \delta_{y}(\bar{X}^{z}(t,x) ) ] |_{z=x}, \end{array} $$

since \([ {\mathscr{L}}_{0}^{z}, {\mathscr{L}}_{i}^{z}] \varphi (x), \varphi \in C_{b}^{\infty }(\mathbb {R}^{N})\) equals to zero for i ≥ 3 when we substitute z = x. We have

$$ \begin{array}{@{}rcl@{}} [ \mathscr{L}_{0}^{z}, \mathscr{L}_{1}^{z}] \Big|_{z=x} &= & \sum\limits_{j_{1}, j_{2} =1}^{N} b^{j_{2}} (x) \partial_{j_{2}} b^{j_{1}} (x) \frac{ \partial }{ \partial x_{j_{1}}} + \sum\limits_{i_{1}=1}^{d} \sum\limits_{j_{1} ,j_{2}, j_{3} =1}^{N} b^{j_{3}} (x) \partial_{j_{3}} \sigma_{i_{1}}^{j_{1}}(x) \sigma_{i_{1}}^{j_{2}}(x) \frac{ \partial^{2} }{ \partial x_{j_{1}} \partial x_{j_{2}}} \\ &&+ \sum\limits_{i_{1}=1}^{d} \sum\limits_{j_{1},j_{2},j_{3} =1}^{N} \sigma_{i_{1}}^{j_{2}} (x) \sigma_{i_{1}}^{j_{3}} (x) \partial_{j_{3}} b^{j_{1}} (x) \frac{ \partial^{2} }{ \partial x_{j_{1}} \partial x_{j_{2}}} \\ && + \sum\limits_{i_{1}, i_{2}=1}^{d} \sum\limits_{j_{1},j_{2}, j_{3}, j_{4} =1}^{N} \sigma_{i_{1}}^{j_{3}}(x) \sigma_{i_{1}}^{j_{4}} (x) \partial_{j_{4}} \sigma_{i_{2}}^{j_{1}}(x) \sigma_{i_{2}}^{j_{2}}(x) \frac{ \partial^{3} }{ \partial x_{j_{1}} \partial x_{j_{2}} \partial x_{j_{3}} }, \end{array} $$
(C.1)

and

$$ \begin{array}{@{}rcl@{}} && [ \mathscr{L}_{0}^{z}, \mathscr{L}_{2}^{z}] \Big|_{z=x} = \frac{1}{2} \sum\limits_{i_{1}=1}^{d} \sum\limits_{j_{1}, j_{2}, j_{3} =1}^{N} \sigma_{i_{1}}^{j_{1}}(x) \sigma_{i_{1}}^{j_{2}}(x) \partial_{j_{1}} \partial_{j_{2}} b^{j_{3}} (x) \frac{ \partial }{ \partial x_{j_{3}}} \\ &&+ \frac{1}{2} \sum\limits_{i_{1}, i_{2}=1}^{d} \sum\limits_{j_{1}, j_{2}, j_{3},j_{4} = 1}^{N} \sigma_{i_{1}}^{j_{1}}(x) \sigma_{i_{1}}^{j_{2}}(x) \{ \partial_{j_{1}} \partial_{j_{2}} \sigma_{i_{2}}^{j_{3}} (x) \sigma_{i_{2}}^{j_{4}}(x) + \partial_{j_{1}} \sigma_{i_{2}}^{j_{3}}(x) \partial_{j_{2}} \sigma_{i_{2}}^{j_{4}}(x) \} \frac{ \partial^{2} } {\partial x_{j_{3}} \partial x_{j_{4}} }. \end{array} $$
(C.2)

Hence, we obtain

$$ \begin{array}{@{}rcl@{}} \sum\limits_{i=1}^{2} \frac{t^{2}}{2} [ \mathscr{L}_{0}^{z}, \mathscr{L}_{i}^{z}] E[ \delta_{y}(\bar{X}^{z}(t,x) ) ] \Big|_{z=x} & = & \frac{t^{2}}{2} \sum\limits_{j_{1}=1}^{N} \mathscr{L} b^{j_{1}} (x) E [ \partial_{j_{1}} \delta_{y} (\bar{X}(t,x) ) ] \\ &&+ \frac{t^{2}}{2} \sum\limits_{i_{1} =1}^{d} \sum\limits_{j_{1}, j_{2} =1}^{N} \left\{ \mathcal{L} \sigma_{i_{1}}^{j_{1}}(x) + \mathcal{V}_{i_{1}} b^{j_{1}}(x) \right\} \sigma_{i_{1}}^{j_{2}}(x) E [ \partial_{j_{1}} \partial_{j_{2}} \delta_{y} (\bar{X} (t,x) )] \\ &&+ \frac{t^{2}}{2} \sum\limits_{i_{1}, i_{2} =1}^{d} \sum\limits_{j_{1}, j_{2}, j_{3}=1}^{N} \mathcal{V}_{i_{1}} \sigma_{i_{2}}^{j_{1}} (x) \sigma_{i_{1}}^{j_{2}}(x) \sigma_{i_{2}}^{j_{3}}(x) E [ \partial_{j_{1}} \partial_{j_{2}} \partial_{j_{3}} \delta_{y} (\bar{X} (t,x) )] \\ &&+ \frac{t^{2}}{4} \sum\limits_{i_{1}, i_{2} =1}^{d} \sum\limits_{j_{1}, j_{2} =1}^{N} \mathcal{V}_{i_{1}} \sigma_{i_{2}}^{j_{1}} (x) \mathcal{V}_{i_{1}} \sigma_{i_{2}}^{j_{2}} (x) E [ \partial_{j_{1}} \partial_{j_{2}} \delta_{y} (\bar{X} (t,x) )]. \end{array} $$
(C.3)

Furthermore, it follows that

$$ \begin{array}{@{}rcl@{}} \sum\limits_{j_{2} =1}^{N} \sigma_{i_{1}}^{j_{2}}(x) E [ \partial_{j_{1}} \partial_{j_{2}} \delta_{y} (\bar{X} (t,x) )] & = & E \left[ \frac{1}{t} {\int}_{0}^{\infty} D_{i_{1},s} \partial_{j_{1}} \delta_{y} (\bar{X} (t,x) ) \mathbf{1}_{s \leq t} ds \right] \\ & = & \frac{1}{t} E \left[ \partial_{j_{1}} \delta_{y} (\bar{X} (t,x) ) {\int}_{0}^{\infty} \mathbf{1}_{s \leq t} dB_{s}^{i_{1}} \right] \\ & = & \frac{1}{t} E \left[ \delta_{y} (\bar{X} (t,x) ) H_{(j_{1})} (\bar{X}(t,x), B_{t}^{i_{1}}) \right], \end{array} $$
(C.4)

where we used the duality formula (??) on the second equality. Similarly, we have

$$ \begin{array}{@{}rcl@{}} \sum\limits_{j_{2}, j_{3}=1}^{N} \sigma_{i_{1}}^{j_{2}}(x) \sigma_{i_{2}}^{j_{3}}(x) E [ \partial_{j_{1}} \partial_{j_{2}} \partial_{j_{3}} \delta_{y} (\bar{X} (t,x) )] &= & \frac{1}{t} \sum\limits_{j_{2} =1 }^{N} \sigma_{i_{1}}^{j_{2}}(x) E [ \partial_{j_{1}} \partial_{j_{2}} \delta_{y} (\bar{X} (t,x) ) B_{t}^{i_{2}} ] \\ &= & \frac{1}{t^{2}} E [ {\int}_{0}^{\infty} D_{i_{1},s} \partial_{j_{1}} \delta_{y} (\bar{X} (t,x) ) B_{t}^{i_{2}} \mathbf{1}_{s \leq t} ds ] \\ &= & \frac{1}{t^{2}} E [ \partial_{j_{1}} \delta_{y} (\bar{X} (t,x) ) (B_{t}^{i_{1}} B_{t}^{i_{2}} - t \mathbf{1}_{i_{1} = i_{2}})] \\ &= & \frac{1}{t^{2}} E [ \delta_{y} (\bar{X} (t,x) ) H_{(j_{1})} (\bar{X}(t,x), B_{t}^{i_{1}} B_{t}^{i_{2}} - t \mathbf{1}_{i_{1} = i_{2}})], \end{array} $$
(C.5)

where on the third equality we used the formula (??). Then, we reach to the assertion of Lemma 1. \(\Box \)

Appendix D. The stochastic weights used in the numerical study

4.1 D.1 Second and third order weight used in Section ??

Based on the second order stochastic weight formula (??), the second order weight \(\pi _{t}^{2,x, \text {BS}}(B_{t})\) is given by

$$ \begin{array}{@{}rcl@{}} \pi_{t}^{2, x, \text{BS} } (B_{t}) = \frac{\sigma^{2}}{4}\left( (B_{t})^{2} - t \right) + \frac{\sigma}{2 t} \left( (B_{t})^{3} - 3 B_{t} t \right) \end{array} $$
(D.1)

for \((t,x) \in (0, \infty ) \times \mathbb {R}\).

From now on, let us see the representation of the third order stochastic weight \(\pi _{t}^{3, x, \text {BS} } (B_{t})\). Firstly, substituting m = 3 into (??), we have

$$ \begin{array}{@{}rcl@{}} && E[ \delta_{y}(\bar{X}(t,x) ) (1+ \pi_{t}^{3,x}(B_{t}))] = E[ \delta_{y}(\bar{X}^{z}(t,x) ) ] \Big|_{z=x} + \sum\limits_{i=1}^{2} \frac{t^{2}}{2} [ \mathscr{L}_{0}^{z}, \mathscr{L}_{i}^{z}] E[ \delta_{y}(\bar{X}^{z}(t,x) ) ] \Big|_{z=x} \\ && + \frac{t^{3}}{6} \sum\limits_{i=2}^{4} [\mathscr{L}_{0}^{z}, [ \mathscr{L}_{0}^{z}, \mathscr{L}_{i}^{z}]] E[ \delta_{y}(\bar{X}^{z}(t,x) ) ] \Big|_{z=x} + \frac{t^{3}}{6} \sum\limits_{i_{1}=1}^{2} \sum\limits_{i_{1} + i_{2} \leq 4} [ \mathscr{L}_{0}^{z}, \mathscr{L}_{i_{1}}^{z}] \mathscr{L}_{i_{2}}^{z} E[ \delta_{y}(\bar{X}^{z}(t,x) ) ] \Big|_{z=x}. \end{array} $$
(D.2)

Note that the second term of (D.2) corresponds to the second order weight \(\pi _{t}^{2,x,\text {BS}}\). Furthermore, since we have

$$ \begin{array}{@{}rcl@{}} \mathscr{L}_{0}^{z} = & \frac{\sigma^{2} z^{2}}{2} \frac{\partial^{2}}{ (\partial x)^{2}}, \ \ \mathscr{L}_{1}^{z} = \sigma^{2} z (x - z) \frac{\partial^{2}}{ (\partial x)^{2}}, \ \ \mathscr{L}_{2}^{z} = \frac{1}{2} \sigma^{2} (x - z)^{2} \frac{\partial^{2}}{ (\partial x)^{2}}, \ \ \mathscr{L}_{i}^{z} = 0, i \geq 3, \end{array} $$

it holds that

$$ \begin{array}{@{}rcl@{}} && \frac{t^{3}}{6} \sum\limits_{i=2}^{4} [\mathscr{L}_{0}^{z}, [ \mathscr{L}_{0}^{z}, \mathscr{L}_{i}^{z}]] E[ \delta_{y}(\bar{X}^{z}(t,x) ) ] \Big|_{z=x} + \frac{t^{3}}{6} \sum\limits_{i_{1}=1}^{2} \sum\limits_{i_{1} + i_{2} \leq 4} [ \mathscr{L}_{0}^{z}, \mathscr{L}_{i_{1}}^{z}] \mathscr{L}_{i_{2}}^{z} E[ \delta_{y}(\bar{X}^{z}(t,x) ) ] \Big|_{z=x} \\ &= & \frac{t^{3}}{6} [\mathscr{L}_{0}^{z}, [ \mathscr{L}_{0}^{z}, \mathscr{L}_{2}^{z}]] E[ \delta_{y}(\bar{X}^{z}(t,x) ) ] \Big|_{z=x} + \frac{t^{3}}{6} [ \mathscr{L}_{0}^{z}, \mathscr{L}_{1}^{z}] \mathscr{L}_{1}^{z} E[ \delta_{y}(\bar{X}^{z}(t,x) ) ] \Big|_{z=x}\\ &&+ \frac{t^{3}}{6} [ \mathscr{L}_{0}^{z}, \mathscr{L}_{1}^{z}] \mathscr{L}_{2}^{z} E[ \delta_{y}(\bar{X}^{z}(t,x) ) ] \Big|_{z=x} \\ && + \frac{t^{3}}{6} [ \mathscr{L}_{0}^{z}, \mathscr{L}_{2}^{z}] \mathscr{L}_{1}^{z} E[ \delta_{y}(\bar{X}^{z}(t,x) ) ] \Big|_{z=x} + \frac{t^{3}}{6} [ \mathscr{L}_{0}^{z}, \mathscr{L}_{2}^{z}] \mathscr{L}_{2}^{z} E[ \delta_{y}(\bar{X}^{z}(t,x) ) ] \Big|_{z=x} \\ &= & \frac{2}{3} t^{3} \sigma^{6} x^{4} \frac{\partial^{4}}{ (\partial x)^{4}} E[ \delta_{y}(\bar{X}^{z}(t,x) ) ] \Big|_{z=x} + \frac{2}{3} t^{3} \sigma^{6} x^{3} \frac{\partial^{3}}{ (\partial x)^{3}} E[ \delta_{y}(\bar{X}^{z}(t,x) ) ] \Big|_{z=x}\\ &&+ \frac{1}{12} t^{3} \sigma^{6} x^{2} \frac{\partial^{2}}{ (\partial x)^{2}} E[ \delta_{y}(\bar{X}^{z}(t,x) ) ] \Big|_{z=x}. \end{array} $$

Hence, we have the third order stochastic weight as follows:

$$ \begin{array}{@{}rcl@{}} \pi_{t}^{3, x, \text{BS}} (B_{t})&=& \pi_{t}^{2, x, \text{BS}} (B_{t}) + \frac{2}{3} t^{3} \sigma^{6} x^{4} H_{(1,1,1,1)}(\bar{X}(t,x), 1)\\ &&+ \frac{2}{3} t^{3} \sigma^{6} x^{3} H_{(1,1,1)}(\bar{X}(t,x), 1) + \frac{1}{12}t^{3} \sigma^{6} x^{2} H_{(1,1)}(\bar{X}(t,x), 1)\\ &=& \pi_{t}^{2, x, \text{BS}} (B_{t}) + \frac{2 \sigma^{2}}{3 t} \left( (B_{t})^{4} - 6 (B_{t})^{2} t + 3 t^{2} \right)\\ &&+ \frac{2 \sigma^{3}}{3} \left( (B_{t})^{3} - 3 B_{t} t \right) + \frac{ \sigma^{4} t }{12} \left( (B_{t})^{2} - t \right). \end{array} $$
(D.3)

4.2 D.2 Second order weight used in Section ??

We set d = 2, N = 2 and the coefficients of the SDE are given by

$$ b^{1} (x) = b^{2} (x) = 0, {\sigma_{1}^{1}}(x) = (x_{1})^{\beta} x_{2}, {\sigma_{2}^{1}}(x) = 0, {\sigma_{1}^{2}}(x) = \alpha \rho x_{2}, {\sigma_{2}^{2}}(x) = \alpha \sqrt{1- \rho^{2}} x_{2}, $$
(D.4)

for \(x \in \mathbb {R}^{2}\). Then, from the formula (??), the second order weight for stochastic volatility model \(\pi _{t}^{2, x, \text {SV}}(B_{t})\) is given by

$$ \begin{array}{@{}rcl@{}} && \pi_{t}^{2, x, \text{SV}}(B_{t}) \\ &= & \frac{1}{2} \mathscr{V}_{1} {\sigma_{1}^{1}}(x) H_{(1)} \left( \bar{X}(t,x), {B_{t}^{1}}{B_{t}^{1}} - t \right) + \frac{1}{2} \mathscr{V}_{1} {\sigma_{1}^{2}}(x) H_{(2)} \left( \bar{X}(t,x), {B_{t}^{1}}{B_{t}^{1}} - t \right)\\ &&+ \frac{1}{2} \mathscr{V}_{1} {\sigma_{2}^{2}}(x) H_{(2)} \left( \bar{X}(t,x), {B_{t}^{1}}{B_{t}^{2}} \right) \\ && + \frac{1}{2} \mathscr{V}_{2} {\sigma_{1}^{1}}(x) H_{(1)} \left( \bar{X}(t,x), {B_{t}^{1}}{B_{t}^{2}} \right) + \frac{1}{2} \mathscr{V}_{2} {\sigma_{1}^{2}} (x) H_{(2)} \left( \bar{X}(t,x), {B_{t}^{1}}{B_{t}^{2}} \right)\\ &&+ \frac{1}{2} \mathscr{V}_{2} {\sigma_{2}^{2}} (x) H_{(2)} \left( \bar{X}(t,x), {B_{t}^{2}}{B_{t}^{2}} - t \right) \end{array} $$
$$ \begin{array}{@{}rcl@{}} && + \frac{t}{2} \mathscr{L} {\sigma_{1}^{1}}(x) H_{(1)} \left( \bar{X}(t,x), {B_{t}^{1}}\right) + \frac{t^{2}}{4} \left( \mathscr{V}_{1} {\sigma_{1}^{1}}(x) \right)^{2} H_{(1,1)} \left( \bar{X}(t,x),1 \right)\\ &&+ \frac{t^{2}}{2} \mathscr{V}_{1} {\sigma_{1}^{1}}(x) \mathscr{V}_{1} {\sigma_{1}^{2}}(x) H_{(1,2)} \left( \bar{X}(t,x),1 \right) \\ && + \frac{t^{2}}{4} \left\{ \left( \mathscr{V}_{1} {\sigma_{1}^{2}}(x) \right)^{2} + \left( \mathscr{V}_{1} {\sigma_{2}^{2}}(x) \right)^{2} \right\} H_{(2,2)} \left( \bar{X}(t,x),1 \right)\\ &&+ \frac{t^{2}}{4} \left( \mathscr{V}_{2} {\sigma_{1}^{1}}(x) \right)^{2} H_{(1,1)} \left( \bar{X}(t,x),1 \right) \\ && + \frac{t^{2}}{2} \mathscr{V}_{2} {\sigma_{1}^{1}}(x) \mathscr{V}_{2} {\sigma_{1}^{2}}(x) H_{(1,2)} \left( \bar{X}(t,x),1 \right)\\ &&+ \frac{t^{2}}{4} \left\{ \left( \mathscr{V}_{2} {\sigma_{1}^{2}}(x) \right)^{2} + \left( \mathscr{V}_{2} {\sigma_{2}^{2}}(x) \right)^{2} \right\} H_{(2,2)} \left( \bar{X}(t,x),1 \right). \end{array} $$
(D.5)

The inverse of Malliaivin covariance \(\gamma ^{\bar {X}(t,x)}\) appearing in Hα is given as follows.

$$ \begin{array}{@{}rcl@{}} \gamma^{\bar{X}(t,x)} = \begin{pmatrix} \frac{\left( {\sigma_{1}^{2}}(x)\right)^{2} + \left( {\sigma_{2}^{2}}(x)\right)^{2}}{\left( {\sigma_{1}^{1}}(x) {\sigma_{2}^{2}}(x) \right)^{2} t } & - \frac{{\sigma_{1}^{2}}(x)}{{\sigma_{1}^{1}}(x) \left( {\sigma_{2}^{2}}(x) \right)^{2} t} \\ - \frac{{\sigma_{1}^{2}}(x)}{{\sigma_{1}^{1}}(x) \left( {\sigma_{2}^{2}}(x) \right)^{2} t} & \frac{1}{\left( {\sigma_{2}^{2}}(x) \right)^{2} t}\\ \end{pmatrix}. \end{array} $$
(D.6)

4.3 D.3 Second order weight used in Section ??

In this case d = 2 and N = 1. The coefficients of the SDE are given by

$$ \begin{array}{@{}rcl@{}} b^{1}(x) = (\mu_{2} - \sigma_{2} \rho \lambda)x, {\sigma_{1}^{1}}(x) = \sigma_{2} \rho x, {\sigma_{2}^{1}}(x) = \sigma_{2} \sqrt{1 - \rho^{2}} x, \end{array} $$

for \(x \in \mathbb {R}\). Then, the second order stochastic weight \(\pi _{t}^{2, x, \text {UIP}}(B_{t})\) is given as follows.

$$ \begin{array}{@{}rcl@{}} \pi_{t}^{2, x, \text{UIP}}(B_{t}) &= & \frac{1}{2} \mathscr{V}_{1} {\sigma_{1}^{1}}(x) H_{(1)} \left( \bar{X}(t,x), {B_{t}^{1}} {B_{t}^{1}} -t \right) + \frac{1}{2} \left\{ \mathscr{V}_{1} {\sigma_{2}^{1}}(x) + \mathscr{V}_{2} {\sigma_{1}^{1}}(x) \right\} H_{(1)} \left( \bar{X}(t,x), {B_{t}^{1}} {B_{t}^{2}} \right) \\ && + \frac{1}{2} \mathscr{V}_{2} {\sigma_{2}^{1}}(x) H_{(1)} \left( \bar{X}(t,x), {B_{t}^{2}} {B_{t}^{2}} -t \right) + \frac{t}{2} \left\{ \mathscr{L} {\sigma_{1}^{1}}(x) + \mathscr{V}_{1} b^{1}(x) \right\} H_{(1)} \left( \bar{X}(t,x), {B_{t}^{1}} \right) \\ && + \frac{t}{2} \left\{ \mathscr{L} {\sigma_{2}^{1}}(x) + \mathscr{V}_{2} b^{1}(x) \right\} H_{(1)} \left( \bar{X}(t,x), {B_{t}^{2}} \right) + \frac{t^{2}}{4} \left( \mathscr{V}_{1} {\sigma_{1}^{1}}(x) \right)^{2} H_{(1,1)} \left( \bar{X}(t,x),1 \right) \\ && + \frac{t^{2}}{4} \left( \mathscr{V}_{2} {\sigma_{1}^{1}}(x) \right)^{2} H_{(1,1)} \left( \bar{X}(t,x),1 \right) + \frac{t^{2}}{4} \left( \mathscr{V}_{1} {\sigma_{2}^{1}}(x) \right)^{2} H_{(1,1)} \left( \bar{X}(t,x),1 \right) \\ && + \frac{t^{2}}{4} \left( \mathscr{V}_{2} {\sigma_{2}^{1}}(x) \right)^{2} H_{(1,1)} \left( \bar{X}(t,x),1 \right) + \frac{t^{2}}{2} \mathscr{L} b^{1}(x) H_{(1)} \left( \bar{X}(t,x),1 \right). \end{array} $$
(D.7)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Iguchi, Y., Yamada, T. Weak approximation of SDEs for tempered distributions and applications. Adv Comput Math 48, 52 (2022). https://doi.org/10.1007/s10444-022-09960-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10444-022-09960-4

Keywords

Mathematics Subject Classification (2010)

Navigation