Skip to main content
Log in

Quasinormal modes for a Kerr-de Sitter black hole in the eikonal limit and a generalization to Myers–Perry-de Sitter black holes with a single rotation

  • Research Article
  • Published:
General Relativity and Gravitation Aims and scope Submit manuscript

Abstract

In this paper, the quasi-normal modes for a Kerr-de Sitter black hole in the geometric optics limit (“photon sphere” quasi-normal modes) for both corotating and counterrotating orbits are studied by calculating the Lyapunov exponent and other relevant parameters. After that, a generalization is made to the case of higher dimensional Kerr-de Sitter black holes-Myers–Perry-de Sitter black holes with a single rotation. The behavior of the parameters is examined for different values of the ratio of specific angular momentum and mass in higher dimensions. The obtained results are also compared with the already established findings in other well-known cases such as Schwarzschild, Schwarzschild-de Sitter, Kerr, and Kerr-de Sitter black holes. It is seen that there is complete agreement between them. Furthermore, the approximation here is accurate even when the eikonal limit is not strictly followed, especially in the slow rotation limit.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Data Availability

Data sharing not applicable to this article as no datasets were generated or analysed during the current study.

References

  1. Frolov, V.P., Novikov, I.D. (eds.): Black hole physics: Basic concepts and new developments, 1st edn. Springer, Dordrecht (1998)

  2. Price, R.H.: Nonspherical Perturbations of Relativistic Gravitational Collapse. I. Scalar and Gravitational Perturbations. Phys. Rev. D 5, 2419 (1972)

    Article  ADS  MathSciNet  Google Scholar 

  3. Price, R.H.: Nonspherical Perturbations of Relativistic Gravitational Collapse. II. Integer-Spin, Zero-Rest-Mass Fields. Phys. Rev. D 5, 2439 (1972)

    Article  ADS  MathSciNet  Google Scholar 

  4. Leaver, E.W.: Spectral decomposition of the perturbation response of the Schwarzschild geometry. Phys. Rev. D 34, 384 (1986)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  5. Sun, Y., Price, R.H.: Excitation of quasinormal ringing of a Schwarzschild black hole. Phys. Rev. D 38, 1040 (1988)

    Article  ADS  MathSciNet  Google Scholar 

  6. Vishveshwara, C.V.: Stability of the Schwarzschild Metric. Phys. Rev. D 1, 2870 (1970)

    Article  ADS  Google Scholar 

  7. Press, W.H.: Long Wave Trains of Gravitational Waves from a Vibrating Black Hole. Astrophys. J. Lett. 170, L105 (1971)

    Article  ADS  Google Scholar 

  8. Chandrasekhar, S., Detweiler, S.: The Quasi-Normal Modes of the Schwarzschild Black Hole, Proceedings of the Royal Society of London. Series A, Math. Phy. Sci. 344, 441 (1975)

    Google Scholar 

  9. Landau, L.D., Lifshitz, E.M.: in Quantum Mechanics (Non-relativistic Theory) ( Butterworth-Heinemann, Oxford, 1981) Chap. 7, pp. 164–170, 3rd ed

  10. Schutz, B.F., Will, C.M.: Black hole normal modes - A semianalytic approach. Astrophys. J. Lett. 291, L33 (1985)

    Article  ADS  Google Scholar 

  11. Iyer, S., Will, C.M.: Black-hole normal modes: A WKB approach. I. Foundations and application of a higher-order WKB analysis of potential-barrier scattering. Phys. Rev. D 35, 3621 (1987)

    Article  ADS  Google Scholar 

  12. Iyer, S.: Black-hole normal modes: A WKB approach. II. Schwarzschild black holes. Phys. Rev. D 35, 3632 (1987)

    Article  ADS  Google Scholar 

  13. Kokkotas, K.D., Schutz, B.F.: Black-hole normal modes: A WKB approach. III. The Reissner-Nordström black hole. Phys. Rev. D 37, 3378 (1988)

    Article  ADS  Google Scholar 

  14. Seidel, E., Iyer, S.: Black-hole normal modes: A WKB approach. IV. Kerr black holes. Phys. Rev. D 41, 374 (1990)

    Article  ADS  Google Scholar 

  15. Blome, H.-J., Mashhoon, B.: Quasi-normal oscillations of a Schwarzschild black hole. Phys. Lett. A 100, 231 (1984)

    Article  ADS  MathSciNet  Google Scholar 

  16. Ferrari, V., Mashhoon, B.: New approach to the quasinormal modes of a black hole. Phys. Rev. D 30, 295 (1984)

    Article  ADS  MathSciNet  Google Scholar 

  17. Ferrari, V., Mashhoon, B.: Oscillations of a black hole. Phys. Rev. Lett. 52, 1361 (1984)

    Article  ADS  MathSciNet  Google Scholar 

  18. Leaver, E.W.: An Analytic Representation for the Quasi-Normal Modes of Kerr Black Holes, Proceedings of the Royal Society of London. Series A Math. Phy. Sci. 402, 285 (1985)

    MathSciNet  Google Scholar 

  19. Kokkotas, K.D., Schmidt, B.G.: Quasinormal modes of stars and black holes. Living Rev. Rel. 2, 2 (1999). arXiv:gr-qc/9909058

    Article  MATH  Google Scholar 

  20. Berti, E., Cardoso, V., Starinets, A.O.: Quasinormal modes of black holes and black branes. Class. Quant. Grav. 26, 163001 (2009). arXiv:0905.2975 [gr-qc]

    Article  ADS  MathSciNet  MATH  Google Scholar 

  21. Zerilli, F.J.: Effective Potential for Even-Parity Regge-Wheeler Gravitational Perturbation Equations. Phys. Rev. Lett. 24, 737 (1970)

    Article  ADS  Google Scholar 

  22. Regge, T., Wheeler, J.A.: Stability of a Schwarzschild Singularity. Phys. Rev. 108, 1063 (1957)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  23. Chandrasekhar, S.: On the Equations Governing the Perturbations of the Schwarzschild Black Hole, Proceedings of the Royal Society of London. Series A, Math. Phy. Sci. 343, 289 (1975)

    Google Scholar 

  24. Zerilli, F.J.: Perturbation analysis for gravitational and electromagnetic radiation in a Reissner-Nordström geometry. Phys. Rev. D 9, 860 (1974)

    Article  ADS  Google Scholar 

  25. Moncrief, V.: Odd-parity stability of a Reissner-Nordström black hole. Phys. Rev. D 9, 2707 (1974)

    Article  ADS  Google Scholar 

  26. Moncrief, V.: Stability of Reissner-Nordström black holes. Phys. Rev. D 10, 1057 (1974)

    Article  ADS  Google Scholar 

  27. Moncrief, V.: Gauge-invariant perturbations of Reissner-Nordström black holes. Phys. Rev. D 12, 1526 (1975)

    Article  ADS  Google Scholar 

  28. Chandrasekhar, S.: The Mathematical Theory of Black Holes. Clarendon Press, Oxford (1998)

    MATH  Google Scholar 

  29. Newman, E., Penrose, R.: An approach to gravitational radiation by a method of spin coefficients. J. Math. Phys. 3, 566 (1962). [Errata: J. Math. Phys. 4, 998 (1963)]

  30. Teukolsky, S.A.: Rotating Black Holes: Separable Wave Equations for Gravitational and Electromagnetic Perturbations. Phys. Rev. Lett. 29, 1114 (1972)

    Article  ADS  Google Scholar 

  31. Teukolsky, S.A.: Perturbations of a Rotating Black Hole. I. Fundamental Equations for Gravitational, Electromagnetic, and Neutrino-Field Perturbations. Astrophys. J. 185, 635 (1973)

    Article  ADS  Google Scholar 

  32. Townsend, P.K.: Black holes: Lecture notes (1997), arXiv:gr-qc/9707012

  33. Reall, H.: Part 3 Black Holes, http://www.damtp.cam.ac.uk/user/hsr1000/black_holes_lectures_2020.pdf (2020)

  34. Simpson, M., Penrose, R.: Internal instability in a Reissner-Nordstrom black hole. Int. J. Theor. Phys. 7, 183 (1973)

    Article  Google Scholar 

  35. Poisson, E., Israel, W.: Internal structure of black holes. Phys. Rev. D 41, 1796 (1990)

    Article  ADS  MathSciNet  Google Scholar 

  36. Ori, A.: Inner structure of a charged black hole: An exact mass-inflation solution. Phys. Rev. Lett. 67, 789 (1991)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  37. Dafermos, M.: The Interior of charged black holes and the problem of uniqueness in general relativity. Commun. Pure Appl. Math. 58, 0445 (2005). arXiv:gr-qc/0307013

    Article  MathSciNet  Google Scholar 

  38. Chambers, C., Moss, I.: Stability of the Cauchy horizon in Kerr-de Sitter spacetimes. Class. Quantum Gravity 11, 1035 (1994). arXiv:gr-qc/9404015

  39. Tattersall, O.J.: Kerr-(anti-)de Sitter black holes: Perturbations and quasinormal modes in the slow rotation limit. Phys. Rev. D 98, 104013 (2018). arXiv:1808.10758 [gr-qc]

    Article  ADS  MathSciNet  Google Scholar 

  40. Hatsuda, Y.: Quasinormal modes of Kerr-de Sitter black holes via the Heun function. Class. Quant. Grav. 38, 025015 (2020). arXiv:2006.08957 [gr-qc]

    Article  ADS  MathSciNet  MATH  Google Scholar 

  41. DLMF, NIST Digital Library of Mathematical Functions, http://dlmf.nist.gov/, Release 1.1.2 of 2021-06-15, f. W. J. Olver, A. B. Olde Daalhuis, D. W. Lozier, B. I. Schneider, R. F. Boisvert, C. W. Clark, B. R. Miller, B. V. Saunders, H. S. Cohl, and M. A. McClain, eds. Stop

  42. Dias, O.J.C., Eperon, F.C., Reall, H.S., Santos, J.E.: Strong cosmic censorship in de Sitter space. Phys. Rev. D 97, 104060 (2018). arXiv:1801.09694 [gr-qc]

    Article  ADS  MathSciNet  Google Scholar 

  43. Cardoso, V., Costa, Ja.L., Destounis, K., Hintz, P., Jansen, A.: Quasinormal modes and Strong Cosmic Censorship. Phys. Rev. Lett. 120, 031103 (2018). arXiv:1711.10502 [gr-qc]

    Article  ADS  Google Scholar 

  44. Hod, S.: Strong cosmic censorship in charged black-hole spacetimes: As strong as ever. Nucl. Phys. B 941, 636 (2019)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  45. Dias, O.J.C., Reall, H.S., Santos, J.E.: The BTZ black hole violates strong cosmic censorship. JHEP 12, 097 (2019). arXiv:1906.08265 [hep-th]

    Article  ADS  MathSciNet  MATH  Google Scholar 

  46. Cornish, N.J., Levin, J.J.: Lyapunov timescales and black hole binaries. Class. Quant. Grav. 20, 1649 (2003). arXiv:gr-qc/0304056

    Article  ADS  MathSciNet  MATH  Google Scholar 

  47. Cardoso, V., Miranda, A.S., Berti, E., Witek, H., Zanchin, V.T.: Geodesic stability, Lyapunov exponents and quasinormal modes. Phys. Rev. D 79, 064016 (2009). arXiv:0812.1806 [hep-th]

    Article  ADS  MathSciNet  Google Scholar 

  48. Festuccia, G., Liu, H.: A Bohr-Sommerfeld quantization formula for quasinormal frequencies of AdS black holes. Adv. Sci. Lett. 2, 221 (2009). arXiv:0811.1033 [gr-qc]

    Article  Google Scholar 

  49. Horowitz, G.T., Hubeny, V.E.: Quasinormal modes of AdS black holes and the approach to thermal equilibrium. Phys. Rev. D 62, 024027 (2000). arXiv:hep-th/9909056

    Article  ADS  MathSciNet  Google Scholar 

  50. Shaymatov, S., Dadhich, N., Ahmedov, B.: The higher dimensional Myers-Perry black hole with single rotation always obeys the cosmic censorship conjecture. Eur. Phys. J. C 79, 585 (2019). arXiv:1809.10457 [gr-qc]

    Article  ADS  Google Scholar 

  51. Ponglertsakul, S., Gwak, B.: Massive scalar perturbations on Myers-Perry-de Sitter black holes with a single rotation. Eur. Phys. J. C 80, 1023 (2020). arXiv:2007.16108 [gr-qc]

    Article  ADS  Google Scholar 

  52. Mashhoon, B.: Stability of charged rotating black holes in the eikonal approximation. Phys. Rev. D 31, 290 (1985)

    Article  ADS  MathSciNet  Google Scholar 

  53. Dolan, S.R.: The Quasinormal Mode Spectrum of a Kerr Black Hole in the Eikonal Limit. Phys. Rev. D 82, 104003 (2010). arXiv:1007.5097 [gr-qc]

    Article  ADS  Google Scholar 

  54. Moss, I.G., Norman, J.P.: Gravitational quasinormal modes for anti-de Sitter black holes. Class. Quant. Grav. 19, 2323 (2002). arXiv:gr-qc/0201016

    Article  ADS  MathSciNet  MATH  Google Scholar 

  55. Yang, H., Nichols, D.A., Zhang, F., Zimmerman, A., Zhang, Z., Chen, Y.: Quasinormal-mode spectrum of Kerr black holes and its geometric interpretation. Phys. Rev. D 86, 104006 (2012). arXiv:1207.4253 [gr-qc]

    Article  ADS  Google Scholar 

  56. Akcay, S., Matzner, R.A.: Kerr-de Sitter Universe. Class. Quant. Grav. 28, 085012 (2011). arXiv:1011.0479 [gr-qc]

    Article  ADS  MathSciNet  MATH  Google Scholar 

  57. Gibbons, G.W., Hawking, S.W.: Cosmological event horizons, thermodynamics, and particle creation. Phys. Rev. D 15, 2738 (1977)

    Article  ADS  MathSciNet  Google Scholar 

  58. Zhidenko, A.: Quasinormal modes of Schwarzschild de Sitter black holes. Class. Quant. Grav. 21, 273 (2004). arXiv:gr-qc/0307012

    Article  ADS  MATH  Google Scholar 

  59. Konoplya, R.A.: Quasinormal behavior of the d-dimensional Schwarzschild black hole and higher order WKB approach. Phys. Rev. D 68, 024018 (2003). arXiv:gr-qc/0303052

    Article  ADS  MathSciNet  Google Scholar 

  60. Yoshida, S., Uchikata, N., Futamase, T.: Quasinormal modes of Kerr-de Sitter black holes. Phys. Rev. D 81, 044005 (2010)

    Article  ADS  MathSciNet  Google Scholar 

Download references

Acknowledgements

I would like to thank Milena Boeva for helpful discussions, Dragomir Roussev, Ivelina Yovkova and Zhuli Valacheva for all their love and support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexandar Roussev.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Roussev, A. Quasinormal modes for a Kerr-de Sitter black hole in the eikonal limit and a generalization to Myers–Perry-de Sitter black holes with a single rotation. Gen Relativ Gravit 54, 80 (2022). https://doi.org/10.1007/s10714-022-02965-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10714-022-02965-w

Keywords

Navigation