Skip to main content
Log in

Compatibilized Biopolymer-based Core–shell Nanoparticles: A New Frontier in Malaria Combo-therapy

  • Original Article
  • Published:
Journal of Pharmaceutical Innovation Aims and scope Submit manuscript

Abstract

Purpose

Nano-sized biopolymer-based strategies such as spatio-temporal co-delivery of bioactives could be employed to overcome low bioavailability of antimalarial drugs delivered by conventional dosage forms in malaria combo-therapy. This work reports on the development of core–shell nanocarrier using a biocomposite containing Prosopis africana gum (PG) and microcrystalline cellulose (MCC) for spatio-temporal delivery of artemether and lumefantrine (AL) to enhance oral malaria treatment.

Methods

The biocomposite was prepared by pH-dependent temperature-controlled coacervation and characterized by differential scanning calorimetry, thermogravimetric measurements, and time-domain nuclear magnetic resonance relaxometry. Nanocarrier containing AL was produced using the combination of high-shear homogenization and nanoprecipitation techniques, characterized regarding physicochemical performance, in-vitro dissolution and stability. In-vivo studies were performed in mice infected with Plasmodium berghei parasite.

Results

Biocomposite containing 1:1 ratio of PG:MCC gave the best physicochemical properties. The nanoparticles were spherical with a smooth surface, gave encapsulation efficiency of 81.23 ± 1.54% and 57.15 ± 0.86% for artemether and lumefantrine, respectively, and exhibited an average size of 208.29 ± 0.94 nm, a low polydispersity index value (0.141 ± 0.02) indicating a narrow size distribution and a positive charge of 34.51 ± 1.05 mV. The nanoparticles provided a quick release for artemether and a slow release for lumefantrine within 8 h, indicating the suitability for spatio-temporal drug delivery in malaria combo-therapy. Optimized AL-loaded nanoformulation was stable, histopathologically safe on major organs implicated in malaria and exhibited greater antimalarial activity than marketed AL.

Conclusion

These results postulate the developed core–shell nanocarrier as versatile drug co-delivery nanoplatform and potential alternative approach to improve the pharmacodynamics of AL combo-therapies in malaria treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Uduma EO, Ming H. Bioavailability and pharmacokinetics of dihydroartemisinin (DHA) and its analogs—mechanistic studies on its ADME. Curr Pharmacol Reports. 2018; 33–44.

  2. Wangdi KL, Furuya-Kanamori J, Clark JJ, Barendregt ML, Gatton C, Banwell GC, Kelly SAR, Doi ACA. Comparative effectiveness of malaria prevention measures: a systematic review and network meta-analysis. Parasites & Vectors. 2018;11:1–13.

  3. World Health Organization. World Malaria Report. Geneva, Switzerland: World Health Organization; 2018.

    Google Scholar 

  4. Nnamani PO, Ugwu AA, Ibezim EC, Kenechukwu FC, Akpa PA, Ogbonna JDN, Obitte NC, Odo A, Windbergs M, Lehr CM, Attama AA. Sustained-release liquisolid compact tablets containing artemether-lumefantrine as alternate-day regimen for malaria treatment to improve patient compliance. Int J Nanomed. 2016;11:6365–78.

    CAS  Google Scholar 

  5. Pelfrene E, Pinheiro M-H, Cavaleri M. Artemisinin-based combination therapy in the treatment of uncomplicated malaria: review of recent regulatory experience at the European Medicines Agency. Int Health. 2015;7:239–46.

    PubMed  PubMed Central  Google Scholar 

  6. Amin CN, Fabre H, Blanchin M. Determination of artemether and lumefantrine in anti-malarial fixed–dose combination tablets by microemulsion electrokinetic chromatography with short-end injection procedure. Malaria J. 2013;12:202.

    CAS  Google Scholar 

  7. Novatis Pharma Ag. Coartem (artemether/lumefantrine) tablet description. Available at https://www.rxlist.com/caortem-drug.htm. Accessed on 29 Sept 2018.

  8. Parashar D, Aditya NP, Murthy RSR. Development of artemether and lumefantrine co-loaded nanostructured lipid carriers: physicochemical characterization and in vivo antimalarial activity. Drug Deliv. 2014;23:1–7.

    Google Scholar 

  9. Aditya NP, Patankar S, Madhusudhan B, Murthy RS, Souto EB. Artemether loaded lipid nanoparticles produced by modified thin-film hydration: pharmacokinetics, toxicological and in vivo anti-malarial activity. Eur J Pharm Sci. 2010;40:448–55.

    CAS  PubMed  Google Scholar 

  10. Duchêne D, Gref R. Small is beautiful: surprising nanoparticles. Int J Pharm. 2016;502:219–31.

    PubMed  Google Scholar 

  11. Umeyor CE, Kenechukwu FC, Uronnachi EM, Chime SA, Reginald-Opara J, Attama AA. Recent advances in particulate anti-malarial drug delivery systems: a review. Int J Drug Deliv. 2013;5:1–14.

    CAS  Google Scholar 

  12. Zhang L, Wang S, Zhang M, Sun J. Nanocarriers for oral drug delivery. J Drug Target. 2013;21:515–27.

    CAS  PubMed  Google Scholar 

  13. Chaires-Martínez L, Salazar-Montoya JA, Ramos-Ramírez EG. Physicochemical and functional characterization of the galactomannan obtained from mesquite seeds (Prosopis pallida). Eur Food Res Technol. 2008;227:1669–76.

    Google Scholar 

  14. Builders PF, Ibekwe N, Okpako LC, Attama AA, Kunle OO. Preparation and characterization of mucinated cellulose microparticles for therapeutic and drug delivery purposes. Eur J Pharm Biopharm. 2009;72:34–41.

    CAS  PubMed  Google Scholar 

  15. Builders PF, Agbo MB, Tiwalade A, Okpako LC, Attama AA. Novel multifunctional pharmaceutical excipients derived from microcrystalline cellulose–starch microparticulate composites prepared by compatibilized reactive polymer blending. Int J Pharm. 2010;388:159–67.

    CAS  PubMed  Google Scholar 

  16. Nnamani PO, Hansen S, Windbergs M, Lehr C-M. Development of artemether-loaded nanostructured lipid carrier (NLC) formulation for topical application. Int J Pharm. 2014;477:208–17.

    CAS  PubMed  Google Scholar 

  17. Adikwu MU, Yoshikawa Y, Takada K. Bioadhesive delivery of metformin using prosopis gum with antidiabetic potential. Biol Pharm Bull. 2003;26:662–6.

    CAS  PubMed  Google Scholar 

  18. Nnamani PO, Kenechukwu FC, Okoye O, Akpa PA. Sustained-release mebendazole microcapsules prepared with Prosopis africana peel powder (PAPP) hydrogel. Ind J Novel Drug Deliv. 2017;9:167–84.

    Google Scholar 

  19. Nadaf S, Nnamani PO, Jadhav N. Evaluation of Prospis africana seed gum as an extended release polymer for tablet formulation. AAPS Pharm Sci Technol. 2015;16:716–28.

    CAS  Google Scholar 

  20. Ummartyotin S, Pechyen C. Microcrystalline-cellulose and polypropylene based composite: a simple, selective and effective material for microwavable packaging. Carbohydr Polym. 2016;142:133–40.

    CAS  PubMed  Google Scholar 

  21. Nasution H, Veronicha Y, Irmadani S, Sitompul S. Preparation and characterization of cellulose microcrystalline (MCC) from fiber of empty fruit bunch palm oil, 1st Annual Applied Science and Engineering Conference. IOP Conference Series: Materials Science and Engineering, 2017;180:1–8. 012007. https://doi.org/10.1088/1757-899X/180/1/012007.

  22. Kenechukwu FC, Dias ML, Ricci-Júnior E. Biodegradable nanoparticles from prosopisylated cellulose as a platform for enhanced oral bioavailability of poorly water-soluble drugs. Carbohydr Polym. 2020;256:1–13. https://doi.org/10.1016/j.carbpol.2020.117492.

    Article  CAS  Google Scholar 

  23. Xu S, Yi S, He J, Wang H, Fang Y, Wang Q. Preparation and properties of a novel microcrystalline cellulose-filled composites based on polyamide 6/high-density polyethylene. Materials. 2017;10:1–12.

    Google Scholar 

  24. Dias ML, Dip RMM, Souza DHS, Nascimento JP, Santos AP, Furtado CA. Electrospun nanofibers of poly(lactic acid)/ graphene nanocomposites. J Nanosci Nanotechnol. 2017;17:2531–40.

    CAS  PubMed  Google Scholar 

  25. Gao Y, Zhang R, Lv W, Liu Q, Wang X, Sun P, Winter HH, Xue G. Critical effect of segmental dynamics in polybutadiene/clay nanocomposites characterized by solid state 1H NMR spectroscopy. J Phys Chem C. 2014;118:5606–14.

    CAS  Google Scholar 

  26. Neto RPC, Da Rocha R, Elton J, Tavares MIB. Proton NMR relaxometry as probe of gelatinization, plasticization and montmorillonite-loading effects on starch-based materials. Carbohydr Polym. 2018;182:123–31.

    Google Scholar 

  27. Cheung TTP, Gerstein BC. 1H nuclear magnetic resonance studies of domain structures in polymers. J Appl Physics. 1981;52:5517–28.

    CAS  Google Scholar 

  28. Kenechukwu FC, Attama AA, Ibezim EC, Nnamani PO, Umeyor CE, Uronnachi EM, Gugu TH, Momoh MA, Ofokansi KC, Akpa PA. Surface-modified mucoadhesive microgels as a controlled release system for miconazole nitrate to improve localized treatment of vulvovaginal candidiasis. Eur J Pharm Sci. 2018;111:358–75. https://doi.org/10.1016/j.ejps.2017.10.002.

    Article  CAS  PubMed  Google Scholar 

  29. Lopes M, Shrestha N, Correia A, Shahbazi MA, Sarmento B, Hirvonen J, Veiga F, Seica R, Ribeiro A, Santos HA. Dual chitosan/albumin-coated alginate/ dextran sulfate nanoparticles for enhanced oral delivery of insulin. J Control Rel. 2016;23:29–41. https://doi.org/10.1016/j.jconrel.2016.04.012.

    Article  CAS  Google Scholar 

  30. Patel K, Sarma vvp. Design and evaluation of lumefantrine-oleic acid self nano emulsifying ionic complex for enhanced dissolution. Daru 2013;21-27 https://doi.org/10:1186/2008-2231-21-7

  31. Agubata CO, Nzekwe IT, Attama AA, Mueller-Goymann CC, Onunkwo GC. Formulation, characterization and anti-malarial activity of homolipid-based artemether microparticles. Int J Pharm. 2015;478:202–22.

    CAS  PubMed  Google Scholar 

  32. Kamal AH, EL-Malla SF, Hammad SF. A review on UV spectrophotometric methods for simultaneous multicomponent analysis. Eur J Pharm Med Res. 2016;2:348–360.

  33. Afosah D. Design of simple UV spectrophotometric and HPLC methods for the assay of artemether and lumefantrine in fixed-dose combination tablets. MSc Thesis, Kwame Nkrumah University of Science and Technology, Kumasi. (2010) Available from: https://dspace.knust.edu.gh:8080/jspui/bitstream/123456789/239/1/DANIEL%20AFOSAH%20%28THESIS%29.pdf.http://hdl.handle.net/123456789/356 [last Accessed 8 Aug 2019].

  34. Kuideep V, Neelam B, Sheetal M, Jain D. Formulation and evaluation of tablets containing artemether microspheres and lumefantrine. J Drug Deliv Therap. 2017;7:4–7.

    Google Scholar 

  35. Prasanna R, Saravanan D, Padmavathy J. Method development and validation for the determination of lumefantrine in sold dosage form by RP-HPLC. Int J Pharm Res Dev. 2010;8:84–90.

    Google Scholar 

  36. Christian J, Shah P, Patel M, Patel K, Gandhi T. Optimizing derivatization conditions using an experimental design and simultaneous estimation of artemether and lumefantrine by ratio first order derivative spectrophotometric method. J Taibah Univ Sci. 2017;11:729–40.

    Google Scholar 

  37. Kalyankar TM, Attar MS, Deosarkar SD. Development of UV-visible spectrophotometric method for simultaneous estimation of artemether and lumefantrine. Anal Chem. 2013;12:83–8.

    CAS  Google Scholar 

  38. Beckett AH, Stenlake JB. Practical pharmaceutical chemistry. Part II, 4th. ed., London; Bloomsbury Publishing 2001.

  39. Attama AA, Ayogu IJ, Kenechukwu FC, Ogbonna JDN, Okore VC. A new lipid-based drug delivery system (LBDDS) for oral delivery of tioconazole. Int J Drug Deliv. 2011;3:743–53.

    CAS  Google Scholar 

  40. Coartem (artemether/lumefantrine). https://www.medilexicon.com/drugs/coartem.php  (Assessed Aug 2019). 

  41. Onwurah NE. Introductory biochemistry for life sciences. 1st ed. Enugu, Nigeria: Immaculate Pub. Ltd.; 2001. p. 21–49.

    Google Scholar 

  42. Agbo CP, Umeyor CE, Kenechukwu FC, Ogbonna JDN, Chime SA, Charles L, Agubata CO, Ofokansi KC, Attama AA. Formulation design, in vitro characterizations and anti-malarial investigations of artemether and lumefantrine-entrapped solid lipid microparticles. Drug Dev Ind Pharm. 2016;42:1708–21. https://doi.org/10.3109/03639045.2016.1171331.

    Article  CAS  PubMed  Google Scholar 

  43. Vendruscolo CW, Ferrero C, Pineda EAG, Silveira JLM, Freitas RA, Jiménez-Castellanos EAG, Bresolin TMB. Physicochemical and mechanical characterization of galactomannan from Mimosa scabrella: effect of drying method. Carbohydr Polym. 2009;76:86–93.

    CAS  Google Scholar 

  44. Mendes JF, Paschoalin RT, Carmona VB, Neto ARS, Marques ACP, Marconcini JM, Mattoso LHC, Medeiros ES, Oliveira JE. Biodegradable polymer blends based on corn starch and thermoplastic chitosan processed by extrusion. Carbohydr Polym. 2016;137:452–8.

    CAS  PubMed  Google Scholar 

  45. Siddiqui MZ, Prasad N, Tewari JC. Physicochemical properties and toxicity test of Prosopis juliflora (Sw.) DC. and Balanites aegyptiaca Del gum exudates from Rajasthan. Ind J Exp Biol. 2017;55:782–788.

  46. Kong L, You L, Feng T, Yin X, Liu T, Dong L. Physicochemical characterization of the polysaccharide from Bletilla striata: effect of drying method. Carbohydr Polym. 2015;125:1–8.

    CAS  PubMed  Google Scholar 

  47. Builders PF, Anwunobi PA, Mbah CC, Adikwu MU. New direct compression excipient from tigernut starch: physicochemical and functional properties. AAPS Pharm Sci Tech. 2013;14:818–27.

    CAS  Google Scholar 

  48. Attama AA, Akpa PA. Determination of the amorphicity and glass transition temperatures (Tg) of some natural polysaccharides. J Drug Deliv Sci Technol. 2008;18:219–20.

    CAS  Google Scholar 

  49. Thakur VK, Thakur MK, Gupta RK. Rapid synthesis of graft copolymers from natural cellulose fibers. Carbohydr Polym. 2013;98:820–8.

    CAS  PubMed  Google Scholar 

  50. Momoh MA, Kenechukwu FC, Ofokansi KC, Attama AA, Díaz DD. Insulin-loaded mucoadhesive nanoparticles based on mucin-chitosan complexes for oral delivery and diabetes treatment. Carbohydr Polym. 2020;229:1–10. https://doi.org/10.1016/j.carbpol.2019.115506.

    Article  CAS  Google Scholar 

  51. Attama AA, Kenechukwu FC, Onuigbo EB, Nnamani PO, Obitte NC, Finke JH, Pretor S, Muller-Goymann CC. Solid lipid nanoparticles encapsulating a fluorescent marker (coumarin 6) and anti-malarials – artemether and lumefantrine: evaluation of cellular uptake and anti-malarial activity. Eur J Nanomed. 2016;8:129–138

  52. Blanco E, Shen H, Ferrari M. Principles of nanoparticle design for overcoming biological barriers to drug delivery. Nat Biotechnol. 2015;33:941–51.

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Yahaya ZS, Ofokansi KC, Allagh ST, Bhatia PG. Preparation and characterization of artemether inclusion complexes with hydroxypropyl-β-cyclodextrin. Trop J Pharm Res. 2017;16:2359–64.

    CAS  Google Scholar 

  54. Trasi NS, Bhujbal SV, Zemlyanov DY, Zhou QT, Taylor LS. Physical stability and release properties of lumefantrine amorphous solid dispersion granules prepared by a simple solvent evaporation approach. Int J Pharm X 2020;2:1–13.

  55. Fule RA, Meer TS, Sav AR, Amin PD. Dissolution rate enhancement and physicochemical characterization of artemether and lumefantrine solid dispersions. Int J Drug Deliv. 2012;4:95–106.

    CAS  Google Scholar 

  56. Saini S, Singh G, Kalara N, Singh C, Virmani GT. Development of nanostructured liquid crystalline formulation of antimalarial agents: artemether and lumefantrine. World J Pharm Sci. 2015;4:1811–28.

    CAS  Google Scholar 

  57. Awofisayo SO, Arhewoh M, Okhamafe AO. In vitro interaction studies between artemether – lumefantrine and lamivudine/metronidazole. Int J Curr Res Rev. 2018;10:25–30.

    CAS  Google Scholar 

  58. Bravo Gonza´lez RC, Huwyler J, Boess F, Walter I, Bittner B. In vitro investigation on the impact of the surface-active excipients - cremophor EL, Tween 80 and Solutol HS 15 on the metabolism of midazolam. Biopharm Drug Disp. 2004;25:37–49.

  59. Christiansen A, Backensfeld T, Denner K, Weitschies W. Effects of non-ionic surfactants on cytochrome P450-mediated metabolism in vitro. Eur J Pharm Biopharm. 2011;78:166–72.

    CAS  PubMed  Google Scholar 

  60. Deepa P, Aditya NP, Murthy RRS. Development of artemether and lumefantrine co-loaded nanostructured lipid carriers: physicochemical characterization and in vivo antimalarial activity. Drug Deliv. 2016;23:123–9. https://doi.org/10.3109/10717544.2014.905883.

    Article  CAS  Google Scholar 

  61. Priyanka P, Narsee M. Artemether-lumefantrine nanostructured lipid carriers for oral malaria therapy: Enhanced efficacy at reduced dose and dosing frequency. Int J Pharm. 2015;511:473–87. https://doi.org/10.1016/j.ijpharm.2016.07.021.

    Article  CAS  Google Scholar 

  62. Priyanka P, Shital S, Sulabha P, Aditua P, Shobhona P, Vandana P. Nanostructured lipid carriers for artemether-lumefantrine combination for intravenous therapy of cerebral malaria. Int J Pharm. 2016;513:504–17.

    Google Scholar 

  63. Yufan M, Tingli L, Wen Z, Ying W, Ting C, Oibing M, Tao C. Enhanced antimalarial activity by a novel artemether-lumefantrine lipid emulsion for parenteral administration. Antimicrob Agents Chemother. 2014;58:5658–5665. https://doi.org/10.1128/AAC.01428-13

  64. Shende P, Desai P, Gaud R, Dhumatkar R. Engineering of microcomplex of artemether and lumefantrine for effective drug treatment in malaria. Artif Cells Nanomed Biotechnol. 2017;45:1597–604. https://doi.org/10.1080/21691401.2016.1267012.

    Article  CAS  PubMed  Google Scholar 

  65. Lefèvre G, Thomsen MS. Clinical pharmacokinetics of artemether and lumefantrine (Riamet®). Clin Drug Investig. 1999;18:467–80.

    Google Scholar 

  66. Wahajuddin R, Raju KSR, Singh SP, Taneja I. Investigation of the functional role of P-glycoprotein in limiting the oral bioavailability of lumefantrine. Antimicrob Agents Chemother. 2014;58:489–94.

    CAS  PubMed  PubMed Central  Google Scholar 

  67. Mountfield RJ, Senepin S, Schleimer M, Walter I, Bittner B. Potential inhibitory effects of formulation ingredients on intestinal cytochrome P450. Int J Pharm. 2000;211:89–92.

    CAS  PubMed  Google Scholar 

  68. Coon JS, Knudson W, Clodfelter Lu KB, Weinstein RS. Solutol HS 15, nontoxic polyoxyethylene esters of 12-hydroxystearic acid, reverses multidrug resistance. Cancer Res. 1991;51:897–902.

    CAS  PubMed  Google Scholar 

  69. Kumaratilake LM, Robinson BS, Ferrante A, Poulos A. Antimalarial properties of n-3 and n-6 polyunsaturated fatty acids; in vitro effects on Plasmodium falciparum and in vivo effects on P. berghei. J Clin Investig. 1999;89:961–967.

  70. Krugliak M, Deharo E, Shalmiev G, Sauvain M, Moretti C, Ginsburg H. Antimalarial effects of C18 fatty acids on Plasmodium falciparum in culture and on Plasmodium vinckei petteri and Plasmodium yoelii nigeriensis in vivo. Experimen Parasitol. 1995;81:97–105.

    CAS  Google Scholar 

  71. Ogbonna JDN, Kenechukwu FC, Nwobi CS, Onochie SC, Attama AA. Formulation, in vitro and in vivo evaluation of halofantrine-loaded solid lipid microparticles. Pharm Dev Technol. 2015;20:941–8.

    CAS  PubMed  Google Scholar 

  72. Ogbonna JDN, Nzekwe IT, Kenechukwu FC, Nwobi CS, Amah JI, Attama AA. Development and evaluation of chloroquine phosphate microparticles using solid lipid as a delivery carrier. J Drug Discov Dev Deliv. 2015;2:1011.

    Google Scholar 

Download references

Acknowledgements

Dr. Franklin Chimaobi Kenechukwu greatly appreciates the mentorship of Prof. Dr. Marcos Lopes Dias and his research team for providing a good working condition for this research. The various contributions of the laboratory staff of Instituto de Macromoléculas Professora Eloisa Mano (IMA) and Nanomedicines Unit, Facultade de Pharmacia, Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro-RJ, Brazil, are highly acknowledged.

Funding

The present work has been done with the financial support from the Brazilian National Council for Scientific and Technological Development (CNPq) — Brazil and The World Academy of Sciences (TWAS) — for the advancement of science in developing countries (Italy) (Grant FR number: 3240299288). This research work received support from the Tertiary Education Trust Fund (TETFund) (Grant No. TETFUND/DR&D/CE/NRF/2019/STI/46/) by Government of Nigeria.

Author information

Authors and Affiliations

Authors

Contributions

Franklin Chimaobi Kenechukwu: conceptualization, methodology, validation, resources, formal analysis, investigation, funding acquisition, writing — original and draft as well as revision. Marcos Lopes Dias: conceptualization, methodology, validation, resources, funding acquisition, supervision, project administration, writing — review and editing. Roberto Pinto Cucinelli Neto: conceptualization, methodology, validation, resources, formal analysis, investigation, writing. Eduardo Ricci-Júnior: conceptualization, methodology, validation, resources, supervision, writing – review and editing.

Corresponding author

Correspondence to Franklin Chimaobi Kenechukwu.

Ethics declarations

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 270 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kenechukwu, F.C., Dias, M.L., Neto, R.P.C. et al. Compatibilized Biopolymer-based Core–shell Nanoparticles: A New Frontier in Malaria Combo-therapy. J Pharm Innov 18, 594–620 (2023). https://doi.org/10.1007/s12247-022-09664-8

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12247-022-09664-8

Keywords

Navigation