Skip to main content

Advertisement

Log in

Causality analysis of the groundwater response in a delta plain of the lower Nakdong River, Republic of Korea

Analyse de causalité de la réponse des eaux souterraines dans une plaine du delta du Bas Nakdong, République de Corée

Análisis de causalidad de la respuesta de las aguas subterráneas en una llanura deltaica del río Nakdong inferior, República de Corea

韩国Nakdong河下游三角洲平原地下水响应的因果分析

낙동강 하류 삼각주 지역에서의 지하수반응의 인과해석

Análise de causalidade da resposta das águas subterrâneas em uma planície deltaica do baixo Rio Nakdong, República da Coreia

  • Report
  • Published:
Hydrogeology Journal Aims and scope Submit manuscript

Abstract

The salinity of groundwater in an estuarine delta plain is sometimes related to the presence of an estuarine dam. To understand groundwater processes and salinity variation, time series data on the river water level, groundwater level, and groundwater electrical conductivity were collected for the Nakdong River in southeastern Republic of Korea. Sampling was undertaken upstream of the estuarine barrage system, which is opened and closed depending on upstream flow and seawater level. Comprehensive correlation analysis was performed between the groundwater and river water levels using bubble plots between groundwater electrical conductivity and the hydrological variables. Comparative analysis between the correlations and the field measurements of the hydrological variables indicated a negligible flux connection between the river and groundwater. Oscillatory pressure wave propagation from the river boundary explains the response patterns of the groundwater level. There were different response times for the rising and falling of the river water. Electrical conductivity in groundwater is not directly associated with that of the river except in one well close to the river boundary. The response patterns of groundwater electrical conductivity were explained by potential anthropogenic activity. Further transfer modeling results also indicate a spatial explanatory response pattern for the groundwater level. No spatial patterns in the models of electrical conductivity indicate that the hydrological processes are different with respect to the groundwater level and electrical conductivity.

Résumé

La salinité des eaux souterraines dans la plaine d’un delta estuarien est parfois attribuée à la présence d’un barrage estuarien. Pour comprendre les processus et les variations de la salinité des eaux souterraines, des chroniques de données sur le niveau de l’eau de la rivière, le niveau des eaux souterraines et la conductivité électrique des eaux souterraines ont été collectées pour le Fleuve Natkong, dans le Sud-Ouest de la République de Corée. Un échantillonnage a été effectué à l’amont du système de barrage estuarien, qui est ouvert ou fermé en fonction du débit amont et du niveau de la mer. Une analyse de corrélation complète a été réalisée entre les eaux souterraines et les niveaux de l’eau de la rivière, à l’aide d’un graphique en bulles entre la conductivité électrique des eaux souterraines et les variables hydrologiques. L’analyse comparative entre les corrélations et les mesures de terrain des variables hydrologiques indiquent une connexion de flux négligeable entre la rivière et les eaux souterraines. La propagation d’une onde de pression oscillatoire à partir des rives du fleuve explique les schémas de réponse du niveau des eaux souterraines. Il y a des temps de réponse différents entre la montée et la descente de l’eau de la rivière. La conductivité électrique des eaux souterraines n’est pas directement associée à celle de la rivière sauf dans un puits situé à proximité immédiate de la rivière. Les types de réponse de la conductivité électrique des eaux souterraines ont été expliqués par une possible activité anthropique. D’autres résultats de modélisation du transfert indiquent également un schéma de réponse spatiale explicative du niveau des eaux souterraines. L'absence de tendances spatiales dans les modèles de conductivité électrique indique que les processus hydrologiques différents selon le niveau des eaux souterraines et la conductivité électrique.

Resumen

La salinidad de las aguas subterráneas en una llanura deltaica de estuario se relaciona a veces con la presencia de una presa en el estuario. Para comprender los procesos de las aguas subterráneas y la variación de la salinidad, se recogieron datos de series temporales sobre el nivel del agua del río, el nivel y la conductividad eléctrica de las aguas subterráneas en el río Nakdong, en el sureste de la República de Corea. El muestreo se llevó a cabo aguas arriba del sistema de presa del estuario, que se abre y se cierra en función del flujo aguas arriba y del nivel del agua del mar. Se realizó un amplio análisis de correlación entre las aguas subterráneas y los niveles de agua del río utilizando gráficos de tipo burbuja entre la conductividad eléctrica de las aguas subterráneas y las variables hidrológicas. El análisis comparativo entre las correlaciones y las mediciones de campo de las variables hidrológicas indicó una conexión de flujo insignificante entre el río y las aguas subterráneas. La propagación de ondas de presión oscilatorias desde el límite del río explica los patrones de respuesta del nivel de las aguas subterráneas. Hubo diferentes tiempos de respuesta para la subida y la bajada del agua del río. La conductividad eléctrica de las aguas subterráneas no está directamente asociada a la del río, excepto en un pozo cercano a su límite. Los patrones de respuesta de la conductividad eléctrica de las aguas subterráneas se explicaron por la posible actividad antropogénica. Los resultados de los modelos de transferencia también indican un patrón de respuesta espacial explicativo para el nivel de las aguas subterráneas. La ausencia de patrones espaciales en los modelos de conductividad eléctrica indica que los procesos hidrológicos son diferentes con respecto al nivel de las aguas subterráneas y la conductividad eléctrica.

摘要

河口三角洲平原地下水盐度有时与河口大坝的存在有关。为了了解地下水过程和盐度变化, 收集了韩国东南部Nakdong河的河水位、地下水位和地下水电导率的时间序列数据。在河口拦河坝系统上游进行了采样, 根据上游流量和海水位开启和关闭。利用地下水电导率与水文变量之间的气泡图, 对地下水和河水位进行了综合相关性分析。相关性和水文变量的现场测量之间的比较分析表明, 河流和地下水之间的通量可以忽略不计。来自河流边界的振荡压力波传播解释了地下水位的响应模式。河水涨落有不同的反应时间。除了靠近河流边界的一口井外, 地下水的电导率与河流的电导率没有直接关系。地下水电导率的响应模式可以通过潜在的人为活动来解释。进一步的迁移建模结果也表明了地下水位的空间可解释的响应模式。电导率模型中没有空间模式表明水文过程在地下水位和电导率方面是不同的。

하구언 삼각주 지역에서의 지하수 염도의 변동은 하구언 댐의 영향을 받을 수 있다. 삼각주 지역에서의 지하수 과정과 염도를 이해하기 위해서, 하천수위와 지하수위, 지하수 전기전도도의 시계열자료를 대한민국 남동쪽에 위치한 낙동강 하류와 그 인근에서 수집하였다. 자료의 수집은 하구언 댐의 상류부에서 수행되었는데 하구언 댐은 상류부의 흐름과 해수면 높이에 따라서 수문을 운영하고 있다. 하천수와 지하수 사이의 종합적인 분석은 인자 간 시간에 따른 교차상관관계 패턴을 통해 수행되었다. 관측값들의 비교분석은 하천과 지하수사이의 유동이 무시할 수 있을 정도로 나타났고, 하천경계면에서 반복적인 파동은 지하수 반응기작을 설명해 주었다. 또한, 하천수의 증감에 따른 상이한 반응시간도 보여주었다. 지하수의 전기 전도도는 하천과 인접한 한개의 관정을 제외하고는 하천수와 직접적으로 연계되지 않았다. 대부분의 지하수 전기전도도는 인위적인 활동으로 설명되었다. 추가적인 전이함수 모의도 지하수 반응 양상을 설명해주고 있는데, 지하수위 전기전도도의 공간적인 특성이 나타나지 않은 것은 지하수위와 전기전도도를 지배하는 수문학적인 기작이 상이함을 의미한다.

Resumo

A salinidade das águas subterrâneas numa planície deltaica estuarina relaciona-se ocasionalmente com a presença de uma barragem estuarina. Para compreender os processos das águas subterrâneas e a variação da salinidade, foram coletados dados de séries temporais sobre o nível da água do rio, o nível das águas subterrâneas, e a condutividade eléctrica das águas subterrâneas para o Rio Nakdong, no sudeste da República da Coreia. A amostragem foi realizada a montante do sistema de barragens estuarinas, que é aberto e fechado dependendo do caudal a montante e do nível da água do mar. Foi realizada uma análise abrangente de correlação entre os níveis das águas subterrâneas e fluviais, utilizando gráficos de bolhas entre a condutividade elétrica das águas subterrâneas e as variáveis hidrológicas. A análise comparativa entre as correlações e as medições de campo das variáveis hidrológicas indicou uma ligação de fluxo negligenciável entre o rio e as águas subterrâneas. A propagação de ondas de pressão oscilatória a partir dos limites do rio explica os padrões de resposta do nível das águas subterrâneas. Houve tempos de resposta diferentes para a elevação e diminuição da água do rio. A condutividade elétrica nas águas subterrâneas não está diretamente associada com a do rio, exceto em um poço próximo ao limite do rio. Os padrões de resposta da condutividade elétrica das águas subterrâneas foram explicados pela atividade antropogênica potencial. Outros resultados de modelos de transferência indicam também um padrão de resposta espacial explicativo para o nível das águas subterrâneas. Nenhum padrão espacial nos modelos de condutividade elétrica indica que os processos hidrológicos são diferentes no que diz respeito ao nível das águas subterrâneas e à condutividade elétrica.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Abd-Elaty I, Zeleňáková M, Krajníková K, Abd-Elhamid HF (2021) Analytical solution of saltwater intrusion in costal aquifers considering climate changes and different boundary conditions. Water 13(7):995. https://doi.org/10.3390/w13070995

    Article  Google Scholar 

  • Bajracharya R, Nakamura T, Ghimire S, Shakya BM, Tamrakar NK (2020) Identifying groundwater and river water interconnections using hydrochemistry, stable isotopes, and statistical methods in Hanumante river, Kathmandu valley, central Nepal. Water 12(6). https://doi.org/10.3390/w12061524

  • Barlow PM, Reichard EG (2010) Saltwater intrusion in coastal regions of North America. Hydrogeol J 18:247–260

    Article  Google Scholar 

  • Brunner P, Cook PG, Simmons CT (2009) Hydrogeologic controls on disconnection between surface water and groundwater. Water Resour Res 45:W01422. https://doi.org/10.1029/2008WR006953

    Article  Google Scholar 

  • Cloutier V, Lefebvre R, Therrien R, Savard MM (2018) Multivariate statistical analysis of geochemical data as indicative of the hydrogeochemical evolution of groundwater in a sedimentary rock aquifer system. J Hydrol 353:294–313

    Article  Google Scholar 

  • Demirel Z (2004) The history and evaluation of saltwater intrusion into a coastal aquifer in Mersin, Turkey. J Environ Manag 70:275–282

    Article  Google Scholar 

  • DeWalle DR, Boyer EW, Buda AR (2016) Exploring lag times between monthly atmospheric deposition and stream chemistry in Appalachian forests using cross-correlation. Atmos Environ 146:206–214. https://doi.org/10.1016/j.atmosenv.2016.09.015

    Article  Google Scholar 

  • Ferencz SB, Cardenas MB, Neilson BT (2019) Analysis of the effects of dam release properties and ambient groundwater flow on surface water-groundwater exchange over a 100-km-long reach. Water Resour Res 55:8526–8546. https://doi.org/10.1029/2019WR025210

    Article  Google Scholar 

  • Fu YM, Dong YH, Xie YQ, Xu ZF, Wang LH (2020) Impacts of regional groundwater flow and river fluctuation on floodplain wetlands in the middle reach of the yellow river. Water 12(7). https://doi.org/10.3390/w12071922

  • Granger CWJ (1969) Investigating causal relations by econometric models and cross-spectral methods. Econometric 37:424–438

    Article  Google Scholar 

  • Greggio N, Giambastiani BMS, Mollema P, Laghi M, Capo D, Gabbianelli G, Antonellini M, Dinelli E (2020) Assessment of the main geochemical processes affecting surface water and groundwater in a low-lying coastal area: Implications for water management. Water 12(6):1720. https://doi.org/10.3390/w12061720

    Article  Google Scholar 

  • Han River Flood Control Office (2014) WAMIS (Water Resources Management Information System). http://www.wamis.go.kr/. Accessed 1 Sept 2021

  • Haugh LD (1976) Checking the independence of two covariance-stationary time series: A univariate residual cross-correlation approach. J Am Stat Assoc 71:378–385

    Article  Google Scholar 

  • Hyndman RJ, Khandakar Y (2008) Automatic time series forecasting: The forecast package for R. J Stat Softw 27(3):1–22. https://doi.org/10.18637/jss.v027.i03

    Article  Google Scholar 

  • Jeong JY, Kim TH, Im ES, Hwang WK, Kim GJ (2017) Evaluation of discharge capacity of upper sand deposit at the Nakdong River estuary. Korean Geosynthetics Soc 16(2):109–119. https://doi.org/10.12814/jkgss.2017.16.2.109

    Article  Google Scholar 

  • Kim SH (2000) Landform changes around the southern part of Nakdong River delta after barrage construction. J Geogr 36:33–62

    Google Scholar 

  • Kim KY, Park KH (2009) Dynamic freshwater–saline water interaction in the coastal zone of Jeju Island, South Korea. Hydrogeol J 17:617–629

    Article  Google Scholar 

  • Kim J-H, Lee JH, Cheong T-J, Kim R-H, Koh D-C, Ryu J-S, Chang H (2005) Use of time series analysis for the identification of tidal effect on groundwater in the coastal area of Kimje, Korea. J Hydrol 300:188–198

    Article  Google Scholar 

  • Lehmann A, Rode M (2001) Long-term behaviour and cross-correlation water quality analysis of the river Elbe,Germany. Water Res 35(9):2153–2160. https://doi.org/10.1016/S0043-1354(00)00488-7

    Article  Google Scholar 

  • Matthess G (1983) Natural processes controlling the behaviour of contaminants in ground-water. Geojournal 7(5):435–443

    Article  Google Scholar 

  • Muhammad A-K, Husam A-N (2011) Hydro-geochemical characteristics of groundwater beneath the Gaza Strip. J Water Resour Protect 3:341–348

    Article  Google Scholar 

  • Oh Y, Hamm S, Ha K, Yoon H, Chung I (2016) Characterizing the impact of river barrage construction on stream-aquifer interactions, Korea. Water 8:137. https://doi.org/10.3390/w8040137

    Article  Google Scholar 

  • Park SK, Kim DH, Han CS, Jung SW (2011) Study on behavior of salinity wedge at Nakdong River barrage. Proc Korea Water Resour Assoc Conference:63–67

  • Pierce DA (1977) Relationships—and the lack thereof—between economic time series, with special reference to money and interest rates. J Am Stat Assoc 72(357):11–26

    Google Scholar 

  • Posavec K, Vukojević P, Ratkaj M, Bedeniković T (2017) Cross-correlation modelling of surface water – groundwater interaction using the excel spreadsheet application. Mining-Geol-Petroleum Eng Bull 32(1):25–32

    Google Scholar 

  • Salas JD, Delleur JW, Yevjevich V, Lane WL (1980) Applied Modelling of Hydrologic Time Series. Water Resources Publications, Littleton

    Google Scholar 

  • Sanford WE, Pope JP (2010) Current challenges using models to forecast seawater intrusion: Lessons from the Eastern Shore of Virginia,US. Hydrogeol J 18(1):73–93

    Article  Google Scholar 

  • Santos IR, Eyre BD, Huettel M (2012) The driving forces of porewater and groundwater flow in permeable coastal sediment: A review. Estuar Coast Shelf Sci 98:1–15

    Article  Google Scholar 

  • Seo SB, Kim YO (2018) Optimization of conjunctive use of surface water and groundwater for sustainable water resources management. Water Future 51(12):56–62

    Google Scholar 

  • Shalem Y, Yechieli Y, Herut B, Weinstein Y (2019) Aquifer response to estuarine stream dynamics. Water 11:1678. https://doi.org/10.3390/w11081678

    Article  Google Scholar 

  • Sherif MM, Hamza KI (2001) Mitigation of seawater intrusion by pumping brackish water. Transp Porous Media 43:29–44

    Article  Google Scholar 

  • Shin HH, Hwang MH, Kang SU, Lee SJ (2009) Analysis on hydraulic characteristics in Nakdong estuary barrage. Proc Korea Water Resour Assoc Conference:764–769

  • Sivan O, Yechieli Y, Herut B, Lazar B (2005) Geochemical evolution and timescale of seawater intrusion into the coastal aquifer of Israel. Geochim Cosmochim Acta 69(3):579–592

    Article  Google Scholar 

  • Taniguchi M, Iwakawa H (2004) Submarine groundwater discharge in Osaka Bay, Japan. Japanese Soc Limnol 5:25–32

    Article  Google Scholar 

  • Webb M, Howard K (2011) Modeling the transient response of saline intrusion to rising sea-levels. Groundwater 49:560–569

    Article  Google Scholar 

  • Welch C, Harrington GA, Leblanc M, Batlle-Aguilar J, Cook PG (2014) Relative rates of solute and pressure propagation into heterogeneous alluvial aquifers following river flow events. J Hydrol 511:891–903. https://doi.org/10.1016/j.jhydrol.2014.02.032

    Article  Google Scholar 

  • Winter TC (1999) Relation of stream, lakes, and wetlands to groundwater flow systems. J Hydrol 7:28–45

    Google Scholar 

  • Woessner WW (2020) Groundwater-surface water exchange, The Grpimdwater Project, 158P, ISBN: 978-1-7770541-5-1

  • Zamora PB, Cardenas MB, Cook PLM (2021) Groundwater-surface water interactions in a river estuary and the importance of geomorphology: insights from hydraulic, thermal and geophysical observations. Hydrol Process 35(10). https://doi.org/10.1002/hyp.14372

Download references

Acknowledgments

The authors would like to express appreciation to the reviewers and editorial staff of Hydrogeology Journal.

Funding

This work was supported by the Research Programs (2016R1D1A1B02008137 and 2022R1A4A5028840) of the National Science Foundation from Republic of Korea.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sanghyun Kim.

Ethics declarations

Conflicts of interest

No potential competing interests are reported by the author.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

ESM 1

(PDF 329 kb)

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jeon, Ht., Lee, E. & Kim, S. Causality analysis of the groundwater response in a delta plain of the lower Nakdong River, Republic of Korea. Hydrogeol J 30, 1751–1767 (2022). https://doi.org/10.1007/s10040-022-02519-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10040-022-02519-z

Keywords

Navigation