Skip to main content
Log in

Influence of surface modified mixed metal oxide nanoparticles on the electrochemical and mechanical properties of polyurethane matrix

  • Research Article
  • Published:
Frontiers of Chemical Science and Engineering Aims and scope Submit manuscript

Abstract

Newly synthesized functional nanoparticles, 3-amino-1,2,4-triazole (ATA)/SiO2—TiO2 were introduced to the polyurethane (PU) matrix. Electrochemical techniques were used to investigate the barrier properties of the synthesized PU—ATA/SiO2—TiO2 nanocomposite coated steel specimen. In natural seawater, electrochemical impedance spectroscopy experiments indicated outstanding protective behaviour for the PU—ATA/SiO2—TiO2 coated steel. The coating resistance (Rcoat) of PU—ATA/SiO2—TiO2 was determined to be 2956.90 kΩ·cm−2. The Rcoat of the PU—ATA/SiO2—TiO2 nanocomposite coating was found to be over 50% higher than the PU coating. The current measured along the scratched surface of the PU—ATA/SiO2—TiO2 coating was found to be very low (1.65 nA). The enhanced ATA/SiO2—TiO2 nanoparticles inhibited the entry of electrolytes into the coating interface, as revealed by scanning electron microscopy/energy dispersive X-ray spectroscopy and X-ray diffraction analysis of the degradation products. Water contact angle testing validated the hydrophobic nature of the PU—ATA/SiO2—TiO2 coating (θ = 115.4°). When the concentration of ATA/SiO2—TiO2 nanoparticles was 2 wt %, dynamic mechanical analysis revealed better mechanical properties. Therefore, the newly synthesised PU—ATA/SiO2—TiO2 nanocomposite provided excellent barrier and mechanical properties due to the addition of ATA/SiO2—TiO2 nanoparticles to the polyurethane, which inhibited material degradation and aided in the prolongation of the coated steel’s life.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Ding W, Bonk A, Bauer T. Corrosion behavior of metallic alloys in molten chloride salts for thermal energy storage in concentrated solar power plants: a review. Frontiers of Chemical Science and Engineering, 2018, 12(3): 564–576

    Article  CAS  Google Scholar 

  2. Mobin M, Aslam J, Alam R. Corrosion protection of poly(aniline-co-N-ethylaniline)/ZnO nanocomposite coating on mild steel. Arabian Journal for Science and Engineering, 2017, 42(1): 209–224

    Article  CAS  Google Scholar 

  3. Raj X J, Nishimura T. Evaluation of the corrosion protection performance of epoxy-coated high manganese steel by SECM and EIS techniques. Journal of Failure Analysis and Prevention, 2016, 16(3): 417–426

    Article  Google Scholar 

  4. Bhat S I, Ahmad S. Castor oil—TiO2 hyperbranched poly(ester amide) nanocomposite: a sustainable, green precursor-based anticorrosive nanocomposite coatings. Progress in Organic Coatings, 2018, 123: 326–336

    Article  CAS  Google Scholar 

  5. Habib S, Fayyad E, Nawaz M, Khan A, Shakoor R A, Kahraman R, Abdullah A. Cerium dioxide nanoparticles as smart carriers for self-healing coatings nanomaterials. Nanomaterials, 2020, 10(4): 791

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Xavier J R. Investigation on the effect of nano-ceria on the epoxy coatings for corrosion protection of mild steel in natural seawater. Anti-Corrosion Methods and Materials, 2018, 65(1): 38–45

    Article  CAS  Google Scholar 

  7. Yang D, Wang S, Zhong R, Liu W, Qiu X. Preparation of lignin/TiO2 nanocomposites and their application in aqueous polyurethane coatings. Frontiers of Chemical Science and Engineering, 2019, 13(1): 59–69

    Article  CAS  Google Scholar 

  8. Xavier J R, Nallaiyan R. Application of EIS and SECM studies for investigation of anticorrosion properties of epoxy coatings containing ZrO2 nanoparticles on mild steel in 3.5% NaCl solution. Journal of Failure Analysis and Prevention, 2016, 16(6): 1082–1091

    Article  Google Scholar 

  9. Pinho L, Rojas M, Mosquera M J. Mosquera. Ag—SiO2—TiO2 nanocomposite coatings with enhanced photoactivity for self-cleaning application on building materials. Applied Catalysis B: Environmental, 2015, 178: 144–154

    Article  CAS  Google Scholar 

  10. Yang J, Xu Y, Su C, Nie S, Li Z. Synthesis of hierarchical nanohybrid CNT@Ni-PS and its applications in enhancing the tribological, curing and thermal properties of epoxy nanocomposites. Frontiers of Chemical Science and Engineering, 2021, 15(5): 1281–1295

    Article  CAS  Google Scholar 

  11. Chattopadhyay D K, Raju K V S N. Structural engineering of polyurethane coatings for high performance applications. Progress in Polymer Science, 2007, 32(3): 352–418

    Article  CAS  Google Scholar 

  12. Xavier J R. Electrochemical, mechanical and adhesive properties of surface modified NiO-epoxy nanocomposite coatings on mild steel. Materials Science and Engineering B, 2020, 260: 114639

    Article  CAS  Google Scholar 

  13. Hasannejad H, Shahrabi T, Jafarian M. Synthesis and properties of high corrosion resistant Ni-cerium oxide nanocomposite coating. Materials and Corrosion, 2013, 64(12): 1104–1113

    Article  CAS  Google Scholar 

  14. Xu Y, Petrovic Z, Das S, Wilkes G L. Morphology and properties of thermoplastic polyurethane with dangling chain in ricinoleate-based soft segment. Polymer, 2008, 49(19): 4248–4258

    Article  CAS  Google Scholar 

  15. Teimouri A, Soltani N, Chermahini A N. Synthesis of mono and bis-4-methylpiperidiniummethyl-urea as corrosion inhibitors for steel in acidic media. Frontiers of Chemical Science and Engineering, 2011, 5(1): 43–50

    Article  CAS  Google Scholar 

  16. Montemor M F, Trabelsi W, Lamaka S V, Yasakau K A, Zheludkevich M L, Bastos A C, Ferreira M G S. The synergistic combination of bis-silane and CeO2—ZrO2 nanoparticles on the electrochemical behaviour of galvanised steel in NaCl solutions. Electrochimica Acta, 2008, 53(20): 5913–5922

    Article  CAS  Google Scholar 

  17. Nguyen T A, Nguyen H, Nguyen T V, Thai H, Shi X. Effect of nanoparticles on the thermal and mechanical properties of epoxy coatings. Journal of Nanoscience and Nanotechnology, 2016, 16(9): 9874–9881

    Article  CAS  Google Scholar 

  18. Xavier J R. Effect of surface modified WO3 nanoparticle on the epoxy coatings for the adhesive and anticorrosion properties of mild steel. Journal of Applied Polymer Science, 2020, 137(5): 48323

    Article  CAS  Google Scholar 

  19. Xavier J R. Investigation on the anticorrosion, adhesion and mechanical performance of epoxy nanocomposite coatings containing epoxy-silane treated nano-MoO3 on mild steel. Journal of Adhesion Science and Technology, 2020, 34(2): 115–134

    Article  CAS  Google Scholar 

  20. Erten Ü, Ünal H İ, Zor S, Atapek Ş H. Structural and electrochemical characterization of Zn—TiO2 and Zn—WO3 nanocomposite coatings electrodeposited on St 37 steel. Journal of Applied Electrochemistry, 2015, 45(9): 991–1003

    Article  CAS  Google Scholar 

  21. Mannari V M, Massingill J L. Two-component high-solid polyurethane coating system based on soy polyols. Journal of Coatings Technology and Research, 2006, 3(2): 151–157

    Article  CAS  Google Scholar 

  22. Fandi Z, Ameur N, Brahimi F T, Bedrane S, Bachir R. Photocatalytic and corrosion inhibitor performances of CeO2 nanoparticles decorated by noble metals: Au, Ag, Pt. Journal of Environmental Chemical Engineering, 2020, 8(5): 104346

    Article  CAS  Google Scholar 

  23. Yeh J, Huang H, Chen C, Su W, Yu Y. Siloxane modifed epoxy resin-clay nanocomposite coatings with advanced anticorrosive properties prepared by a solution dispersion approach. Surface and Coatings Technology, 2006, 200(8): 2753–2763

    Article  CAS  Google Scholar 

  24. Alam M, Alandis N M, Zafar F, Sharmin E, Al-Mohammadi Y M. Polyurethane—TiO2 nanocomposite coatings from sunflower-oil-based amide diol as soft segment. Journal of Macromolecular Science: Part A, 2018, 55: 698–708

    Article  CAS  Google Scholar 

  25. Davis A, Yeong Y H, Steele A, Bayer I S, Loth E. Superhydrophobic nanocomposite surface topography and ice adhesion. ACS Applied Materials & Interfaces, 2014, 6(12): 9272–9279

    Article  CAS  Google Scholar 

  26. Sung L P, Comer J, Forster A M, Hu H, Floryancic B, Brickweg L, Fernando R H. Scratch behavior of nano-alumina/polyurethane coatings. Journal of Coatings Technology and Research, 2008, 5(4): 419–430

    Article  CAS  Google Scholar 

  27. Li S, Wang S, Du X, Wang H, Cheng X, Du Z. Waterborne polyurethane coating based on tannic acid functionalized Ce-MMT nanocomposites for the corrosion protection of carbon steel. Progress in Organic Coatings, 2022, 163: 106613

    Article  CAS  Google Scholar 

  28. Cambon J B, Esteban J, Ansart F, Bonino J P, Turq V, Santagneli S H, Santilli C V, Pulcinelli S H. Effect of cerium on structure modifications of a hybrid sol—gel coating, its mechanical properties and anti-corrosion behaviour. Materials Research Bulletin, 2012, 47(11): 3170–3176

    Article  CAS  Google Scholar 

  29. Xavier J R. Electrochemical and mechanical investigation of newly synthesized NiO—ZrO2 nanoparticle-grafted polyurethane nanocomposite coating on mild steel in chloride media. Journal of Materials Engineering and Performance, 2021, 30(2): 1554–1566

    Article  CAS  Google Scholar 

  30. Xavier J R. Electrochemical and dynamic mechanical studies of newly synthesized polyurethane/SiO2—Al2O3 mixed oxide nanocomposite coated steel immersed in 3.5% NaCl solution. Surfaces and Interfaces, 2021, 22: 100848

    Article  CAS  Google Scholar 

  31. Qi D, Wu M, Yang L, Shao J, Baoet Y. Dispersion of “guava-like” silica/polyacrylate nanocomposite particles in polyacrylate matrix. Frontiers of Chemical Science and Engineering, 2008, 2: 127–134

    CAS  Google Scholar 

  32. Liu Y, Wang L, Zhang C, Zhang K, Liu G. A hollow porous Mn2O3 microcontainer for encapsulation and release of corrosion inhibitors. ECS Electrochemistry Letters, 2013, 2(10): 39–42

    Article  Google Scholar 

  33. Yang H T, Chen B M, Guo Z C, Liu H R, Zhang Y C, Huang H, Xu R D, Fu R C. Effects of current density on preparation and performance of Al/conductive coating/α-PbO2—CeO2—TiO2/β-PbO2—MnO2—WC—ZrO2 composite electrode materials. Transactions of Nonferrous Metals Society of China, 2014, 24(10): 3394–3404

    Article  CAS  Google Scholar 

  34. Wang H, Xu J, Du X, Du Z, Cheng X, Wang H. A self-healing polyurethane-based composite coating with high strength and anti-corrosion properties for metal protection. Composites Part B: Engineering, 2021, 225: 109273

    Article  CAS  Google Scholar 

  35. Ibrahim M, Kannan K, Parangusan H, Eldeib S, Shehata O, Ismail M, Zarandah R, Sadasivuni K K. Enhanced corrosion protection of epoxy/ZnO—NiO nanocomposite coatings on steel. Coatings, 2020, 10(8): 783

    Article  CAS  Google Scholar 

  36. Cai Y, Quan X, Li G, Gao N. Anticorrosion and scale behaviors of nanostructured ZrO2—TiO2 coatings in simulated geothermal water. Industrial & Engineering Chemistry Research, 2016, 55(44): 11480–11494

    Article  CAS  Google Scholar 

  37. Bhosale A K, Shinde P S, Tarwal N L, Pawar R C, Kadam P M, Patil P S. Synthesis and characterization of highly stable optically passive CeO2—ZrO2 counter electrode. Electrochimica Acta, 2010, 55(6): 1900–1906

    Article  CAS  Google Scholar 

  38. Iribarren J I, Armelin E, Liesa F, Casanovas J, Aleman C. On the use of conducting polymers to improve the resistance against corrosion of paints based on polyurethane resins. Materials and Corrosion, 2006, 57(9): 683–688

    Article  CAS  Google Scholar 

  39. Wenzel R. Resistance of solid surfaces to wetting by water. Industrial & Engineering Chemistry, 1936, 28(8): 988–994

    Article  CAS  Google Scholar 

  40. Psarras G C, Siengchin S, Karahaliou P K, Georga S N, Krontiras C A, Karger-Kocsis J. Dielectric relaxation phenomena and dynamics in polyoxymethylene/polyurethane/alumina hybrid nanocomposites. Polymer International, 2011, 60(12): 1715–1721

    Article  CAS  Google Scholar 

  41. Mathur V, Arya P K. Dynamic mechanical analysis of PVC/TiO2 nanocomposites. Advanced Composites and Hybrid Materials, 2018, 1(4): 741–747

    Article  CAS  Google Scholar 

  42. Wan C Y, Qiao X Y, Zhang Y, Zhang Y X. Effect of different clay treatment on morphology and mechanical properties of PVC-clay nanocomposites. Polymer Testing, 2003, 22(4): 453–461

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joseph Raj Xavier.

Electronic Supplementary Material

11705_2022_2176_MOESM1_ESM.pdf

Influence of surface modified mixed metal oxide nanoparticles on the electrochemical and mechanical properties of polyurethane matrix

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xavier, J.R. Influence of surface modified mixed metal oxide nanoparticles on the electrochemical and mechanical properties of polyurethane matrix. Front. Chem. Sci. Eng. 17, 1–14 (2023). https://doi.org/10.1007/s11705-022-2176-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11705-022-2176-9

Keywords

Navigation