Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Fetoplacental oxygen homeostasis in pregnancies with maternal diabetes mellitus and obesity

Abstract

Despite improvements in clinical management, pregnancies complicated by pre-existing diabetes mellitus, gestational diabetes mellitus or obesity carry substantial risks for parent and offspring. Some of the endocrine and metabolic changes in parent and fetus in diabetes mellitus and obesity lead to fetal oxygen deficit, mostly due to insulin-induced accelerated fetal metabolism. The human fetus deals with reduced oxygenation through a wide range of adaptive responses that act at various levels in the placenta as well as the fetus. These responses ensure adequate oxygen delivery to the fetus, increase the oxygen transport capacity of fetal blood and redistribute oxygen-rich blood to vital organs such as the brain and heart. The liver has a central role in adapting to reduced oxygenation by increasing its oxygen extraction and stimulating erythropoietin synthesis to increase haematocrit. The type of adaptive response depends on the onset and duration of hypoxia and the severity of the metabolic disturbance. In pregnancies characterized by diabetes mellitus or obesity, these adaptive systems come under additional strain owing to the increased maternal supply of glucose and resultant fetal hyperinsulinaemia, both of which stimulate oxidative metabolism. In the rare situation that the adaptive responses are overwhelmed, stillbirth can ensue.

Key points

  • Pre-existing diabetes mellitus and obesity during pregnancy can be associated with poor remodelling of the uterine spiral arteries and thus a reduction in oxygen delivery to the placenta, resulting in chronic fetal hypoxia.

  • In pregnancies in people with diabetes mellitus, fetal hyperglycaemia and hyperinsulinaemia stimulate fetal metabolism and increase fetal oxygen uptake; this increase leads to metabolically induced oxygen deficit of varying degree and duration.

  • Compensations for hypoxia include increasing oxygen delivery through an increase in fetal haematocrit and increasing fractional oxygen extraction as reflected in the decreased oxygen content of umbilical arterial blood.

  • The fetal liver has a key role both in initiating hypoxia through increased metabolism and in compensation through increased secretion of erythropoietin and thus heightened haematopoiesis and increased haematocrit.

  • Fetal outcomes will vary depending on the onset and duration of hypoxia and the degree of compensation but can include fetal growth restriction or even fetal demise.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Overview of the fetoplacental circulation.
Fig. 2: Interaction of pathways leading to increased number of red blood cells.
Fig. 3: Schematic depicting potential reasons for oxygen deficit in the fetus in pregnancies with diabetes mellitus and/or obesity.
Fig. 4: Adaptive responses of the fetoplacental unit to hypoxia and metabolically induced oxygen deficit in diabetes mellitus and obesity.
Fig. 5: Schematic linking various forms of metabolic disturbance in the mother with adaptations in fetus and placenta.

Similar content being viewed by others

References

  1. Feig, D. S. et al. Trends in incidence of diabetes in pregnancy and serious perinatal outcomes: a large, population-based study in Ontario, Canada, 1996–2010. Diabetes Care 37, 1590–1596 (2014).

    PubMed  Google Scholar 

  2. Knorr, S. et al. Multisystem morbidity and mortality in offspring of women with type 1 diabetes (the EPICOM study): a register-based prospective cohort study. Diabetes Care 38, 821–826 (2015).

    PubMed  Google Scholar 

  3. McIntyre, H. D. et al. Gestational diabetes mellitus. Nat. Rev. Dis. Primers 5, 47 (2019).

    PubMed  Google Scholar 

  4. Godfrey, K. M. et al. Influence of maternal obesity on the long-term health of offspring. Lancet Diabetes Endocrinol. 5, 53–64 (2017).

    PubMed  Google Scholar 

  5. Hjort, L. et al. Diabetes in pregnancy and epigenetic mechanisms — how the first 9 months from conception might affect the child’s epigenome and later risk of disease. Lancet Diabetes Endocrinol. 7, 796–806 (2019).

    PubMed  Google Scholar 

  6. Desoye, G. & Herrera, E. Adipose tissue development and lipid metabolism in the human fetus: the 2020 perspective focusing on maternal diabetes and obesity. Prog. Lipid Res. 81, 101082 (2021).

    CAS  PubMed  Google Scholar 

  7. Sacks, D. A. Etiology, detection, and management of fetal macrosomia in pregnancies complicated by diabetes mellitus. Clin. Obstet. Gynecol. 50, 980–989 (2007).

    PubMed  Google Scholar 

  8. Teramo, K. A. Obstetric problems in diabetic pregnancy–the role of fetal hypoxia. Best Pract. Res. Clin. Endocrinol. Metab. 24, 663–671 (2010). A comprehensive discussion of reasons for fetal hypoxia and how it can be assessed.

    PubMed  Google Scholar 

  9. Itskovitz, J., LaGamma, E. F. & Rudolph, A. M. Effects of cord compression on fetal blood flow distribution and O2 delivery. Am. J. Physiol. 252, H100–H109 (1987).

    CAS  PubMed  Google Scholar 

  10. Edelstone, D. I., Darby, M. J., Bass, K. & Miller, K. Effects of reductions in hemoglobin-oxygen affinity and hematocrit level on oxygen consumption and acid-base state in fetal lambs. Am. J. Obstet. Gynecol. 160, 820–826 (1989); discussion 160, 826–828 (1989).

    Google Scholar 

  11. Lang, U., Baker, R. S., Khoury, J. & Clark, K. E. Effects of chronic reduction in uterine blood flow on fetal and placental growth in the sheep. Am. J. Physiol. Regul. Integr. Comp. Physiol. 279, R53–R59 (2000).

    CAS  PubMed  Google Scholar 

  12. Jacobs, R., Robinson, J. S., Owens, J. A., Falconer, J. & Webster, M. E. The effect of prolonged hypobaric hypoxia on growth of fetal sheep. J. Dev. Physiol. 10, 97–112 (1988).

    CAS  PubMed  Google Scholar 

  13. Moore, L. G. Hypoxia and reproductive health: reproductive challenges at high altitude: fertility, pregnancy and neonatal well-being. Reproduction 161, F81–F90 (2021).

    CAS  PubMed  Google Scholar 

  14. Postigo, L. et al. Where the O2 goes to: preservation of human fetal oxygen delivery and consumption at high altitude. J. Physiol. 587, 693–708 (2009).

    CAS  PubMed  Google Scholar 

  15. Susa, J. B. et al. Chronic hyperinsulinemia in the fetal rhesus monkey: effects of physiologic hyperinsulinemia on fetal substrates, hormones, and hepatic enzymes. Am. J. Obstet. Gynecol. 150, 415–420 (1984).

    CAS  PubMed  Google Scholar 

  16. Hay, W. W. Jr & Sparks, J. W. Placental, fetal, and neonatal carbohydrate metabolism. Clin. Obstet. Gynecol. 28, 473–485 (1985).

    CAS  PubMed  Google Scholar 

  17. Hoch, D., Gauster, M., Hauguel-de Mouzon, S. & Desoye, G. Diabesity-associated oxidative and inflammatory stress signalling in the early human placenta. Mol. Asp. Med. 66, 21–30 (2019).

    CAS  Google Scholar 

  18. Desoye, G. The human placenta in diabetes and obesity: friend or foe? The 2017 Norbert Freinkel award lecture. Diabetes care 41, 1362–1369 (2018).

    PubMed  Google Scholar 

  19. Rys, P. M., Ludwig-Slomczynska, A. H., Cyganek, K. & Malecki, M. T. Continuous subcutaneous insulin infusion vs multiple daily injections in pregnant women with type 1 diabetes mellitus: a systematic review and meta-analysis of randomised controlled trials and observational studies. Eur. J. Endocrinol. 178, 545–563 (2018).

    CAS  PubMed  Google Scholar 

  20. Murphy, H. R. et al. Characteristics and outcomes of pregnant women with type 1 or type 2 diabetes: a 5-year national population-based cohort study. Lancet Diabetes Endocrinol. 9, 153–164 (2021).

    PubMed  Google Scholar 

  21. Hillier, T. A. et al. A pragmatic, randomized clinical trial of gestational diabetes screening. N. Engl. J. Med. 384, 895–904 (2021).

    PubMed  PubMed Central  Google Scholar 

  22. Nam, H. K. & Lee, K. H. Small for gestational age and obesity: epidemiology and general risks. Ann. Pediatr. Endocrinol. Metab. 23, 9–13 (2018).

    PubMed  PubMed Central  Google Scholar 

  23. Teramo, K. A. & Widness, J. A. Increased fetal plasma and amniotic fluid erythropoietin concentrations: markers of intrauterine hypoxia. Neonatology 95, 105–116 (2009).

    CAS  PubMed  Google Scholar 

  24. Davis, E. M. et al. Perinatal outcomes of two screening strategies for gestational diabetes mellitus: a randomized controlled trial. Obstet. Gynecol. 138, 6–15 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Aune, D., Saugstad, O. D., Henriksen, T. & Tonstad, S. Maternal body mass index and the risk of fetal death, stillbirth, and infant death: a systematic review and meta-analysis. JAMA 311, 1536–1546 (2014).

    CAS  PubMed  Google Scholar 

  26. Carter, A. M. Placental gas exchange and the oxygen supply to the fetus. Compr. Physiol. 5, 1381–1403 (2015). A comprehensive account of the physiology of fetal oxygen homeostasis.

    PubMed  Google Scholar 

  27. Carter, A. M., Enders, A. C. & Pijnenborg, R. The role of invasive trophoblast in implantation and placentation of primates. Phil. Trans. R. Soc. B 370, 20140070 (2015).

    PubMed  PubMed Central  Google Scholar 

  28. Aplin, J. D., Myers, J. E., Timms, K. & Westwood, M. Tracking placental development in health and disease. Nat. Rev. Endocrinol. 16, 479–494 (2020).

    CAS  PubMed  Google Scholar 

  29. Stanley, J. L. et al. Effect of gestational diabetes on maternal artery function. Reprod. Sci. 18, 342–352 (2011).

    CAS  PubMed  Google Scholar 

  30. Pietryga, M. et al. Abnormal uterine Doppler is related to vasculopathy in pregestational diabetes mellitus. Circulation 112, 2496–2500 (2005).

    PubMed  Google Scholar 

  31. Pietryga, M., Brazert, J., Wender-Ozegowska, E., Dubiel, M. & Gudmundsson, S. Placental Doppler velocimetry in gestational diabetes mellitus. J. Perinat. Med. 34, 108–110 (2006).

    PubMed  Google Scholar 

  32. Barth, W. H. Jr et al. Uterine arcuate artery Doppler and decidual microvascular pathology in pregnancies complicated by type I diabetes mellitus. Ultrasound Obstet. Gynecol. 8, 98–103 (1996).

    PubMed  Google Scholar 

  33. Chen, C. Y., Chang, H. T., Chen, C. P. & Sun, F. J. First trimester placental vascular indices and volume by three-dimensional ultrasound in pre-gravid overweight women. Placenta 80, 12–17 (2019).

    CAS  PubMed  Google Scholar 

  34. Castellana, B. et al. Maternal obesity alters uterine NK activity through a functional KIR2DL1/S1 imbalance. Immunol. Cell Biol. 96, 805–819 (2018).

    CAS  PubMed  Google Scholar 

  35. Zamudio, S. et al. Hypoglycemia and the origin of hypoxia-induced reduction in human fetal growth. PLoS ONE 5, e8551 (2010).

    PubMed  PubMed Central  Google Scholar 

  36. Kitzmiller, J. L., Watt, N. & Driscoll, S. G. Decidual arteriopathy in hypertension and diabetes in pregnancy: immunofluorescent studies. Am. J. Obstet. Gynecol. 141, 773–779 (1981).

    CAS  PubMed  Google Scholar 

  37. Grunewald, C., Divon, M. & Lunell, N. O. Doppler velocimetry in last trimester pregnancy complicated by insulin-dependent diabetes mellitus. Acta Obstet. Gynecol. Scand. 75, 804–808 (1996).

    CAS  PubMed  Google Scholar 

  38. van den Elzen, H. J., Cohen-Overbeek, T. E., Grobbee, D. E., Quartero, R. W. & Wladimiroff, J. W. Early uterine artery Doppler velocimetry and the outcome of pregnancy in women aged 35 years and older. Ultrasound Obstet. Gynecol. 5, 328–333 (1995).

    PubMed  Google Scholar 

  39. Golinska-Grzybala, K. et al. Subclinical cardiac performance in obese and overweight women as a potential risk factor of preeclampsia. Pregnancy Hypertens. 23, 131–135 (2021).

    PubMed  Google Scholar 

  40. De Rosa, M. C. et al. Glycated human hemoglobin (HbA1c): functional characteristics and molecular modeling studies. Biophys. Chem. 72, 323–335 (1998).

    PubMed  Google Scholar 

  41. Bell, A. W., Kennaugh, J. M., Battaglia, F. C., Makowski, E. L. & Meschia, G. Metabolic and circulatory studies of fetal lamb at midgestation. Am. J. Physiol. 250, E538–E544 (1986).

    CAS  PubMed  Google Scholar 

  42. Bonds, D. R. et al. Estimation of human fetal-placental unit metabolic rate by application of the Bohr principle. J. Dev. Physiol. 8, 49–54 (1986).

    CAS  PubMed  Google Scholar 

  43. Mackay, R. B. Observations of the oxygenation of the foetus in normal and abnormal pregnancy. J. Obstet. Gynaecol. Br. Emp. 64, 185–197 (1957).

    CAS  PubMed  Google Scholar 

  44. Bianchi, C. et al. The role of obesity and gestational diabetes on placental size and fetal oxygenation. Placenta 103, 59–63 (2021).

    CAS  PubMed  Google Scholar 

  45. Taricco, E. et al. Effects of gestational diabetes on fetal oxygen and glucose levels in vivo. BJOG 116, 1729–1735 (2009).

    CAS  PubMed  Google Scholar 

  46. Salvesen, D. R. et al. Placental and fetal Doppler velocimetry in pregnancies complicated by maternal diabetes mellitus. Am. J. Obstet. Gynecol. 168, 645–652 (1993).

    CAS  PubMed  Google Scholar 

  47. Michelsen, T. M. et al. Uteroplacental glucose uptake and fetal glucose consumption: a quantitative study in human pregnancies. J. Clin. Endocrinol. Metab. 104, 873–882 (2019). Clinical data that show that placental utilization of glucose is a modulator of the glucose supply to the human fetus.

    PubMed  Google Scholar 

  48. Aldoretta, P. W. & Hay, W. W. Jr Metabolic substrates for fetal energy metabolism and growth. Clin. Perinatol. 22, 15–36 (1995).

    CAS  PubMed  Google Scholar 

  49. Hay, W. W. Jr, DiGiacomo, J. E., Meznarich, H. K., Hirst, K. & Zerbe, G. Effects of glucose and insulin on fetal glucose oxidation and oxygen consumption. Am. J. Physiol. 256, E704–E713 (1989).

    CAS  PubMed  Google Scholar 

  50. Capkova, A. & Jirasek, J. E. Glycogen reserves in organs of human foetuses in the first half of pregnancy. Biol. Neonat. 13, 129–142 (1968).

    CAS  PubMed  Google Scholar 

  51. Shelley, H. J. Carbohydrate reserves in the newborn infant. Br. Med. J. 1, 273–275 (1964).

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Char, V. C. & Creasy, R. K. Lactate and pyruvate as fetal metabolic substrates. Pediatr. Res. 10, 231–234 (1976).

    CAS  PubMed  Google Scholar 

  53. Burd, L. I. et al. Placental production and foetal utilisation of lactate and pyruvate. Nature 254, 710–711 (1975).

    CAS  PubMed  Google Scholar 

  54. Gresham, E. L. et al. Production and excretion of urea by the fetal lamb. Pediatrics 50, 372–379 (1972).

    CAS  PubMed  Google Scholar 

  55. Hay, W. W. Jr et al. Glucose and lactate oxidation rates in the fetal lamb. Proc. Soc. Exp. Biol. Med. 173, 553–563 (1983).

    CAS  PubMed  Google Scholar 

  56. Sparks, J. W., Hay, W. W. Jr, Bonds, D., Meschia, G. & Battaglia, F. C. Simultaneous measurements of lactate turnover rate and umbilical lactate uptake in the fetal lamb. J. Clin. Invest. 70, 179–192 (1982).

    CAS  PubMed  PubMed Central  Google Scholar 

  57. Loy, G. L. et al. Fetoplacental deamination and decarboxylation of leucine. Am. J. Physiol. 259, E492–E497 (1990).

    CAS  PubMed  Google Scholar 

  58. van den Akker, C. H. et al. Amino acid metabolism in the human fetus at term: leucine, valine, and methionine kinetics. Pediatr. Res. 70, 566–571 (2011).

    PubMed  Google Scholar 

  59. Cetin, I. Amino acid interconversions in the fetal-placental unit: the animal model and human studies in vivo. Pediatr. Res. 49, 148–154 (2001).

    CAS  PubMed  Google Scholar 

  60. Chien, P. F. et al. Protein turnover in the human fetus studied at term using stable isotope tracer amino acids. Am. J. Physiol. 265, E31–E35 (1993).

    CAS  PubMed  Google Scholar 

  61. Philipps, A. F., Porte, P. J., Stabinsky, S., Rosenkrantz, T. S. & Raye, J. R. Effects of chronic fetal hyperglycemia upon oxygen consumption in the ovine uterus and conceptus. J. Clin. Invest. 74, 279–286 (1984).

    CAS  PubMed  PubMed Central  Google Scholar 

  62. Philipps, A. F., Dubin, J. W., Matty, P. J. & Raye, J. R. Arterial hypoxemia and hyperinsulinemia in the chronically hyperglycemic fetal lamb. Pediatr. Res. 16, 653–658 (1982).

    CAS  Google Scholar 

  63. Philipson, E. H., Kalhan, S. C., Riha, M. M. & Pimentel, R. Effects of maternal glucose infusion on fetal acid-base status in human pregnancy. Am. J. Obstet. Gynecol. 157, 866–873 (1987).

    CAS  PubMed  Google Scholar 

  64. Simmons, M. A., Jones, M. D. Jr, Battaglia, F. C. & Meschia, G. Insulin effect on fetal glucose utilization. Pediatr. Res. 12, 90–92 (1978).

    CAS  PubMed  Google Scholar 

  65. Hay, W. W. Jr, Meznarich, H. K., DiGiacomo, J. E., Hirst, K. & Zerbe, G. Effects of insulin and glucose concentrations on glucose utilization in fetal sheep. Pediatr. Res. 23, 381–387 (1988).

    CAS  PubMed  Google Scholar 

  66. Milley, J. R., Papacostas, J. S. & Tabata, B. K. Effect of insulin on uptake of metabolic substrates by the sheep fetus. Am. J. Physiol. 251, E349–E356 (1986).

    CAS  PubMed  Google Scholar 

  67. Pedersen, J. Diabetes mellitus and pregnancy: present status of the hyperglycaemia–hyperinsulinism theory and the weight of the newborn baby. Postgrad. Med. J. 47 (Suppl.), 66–67 (1971).

    Google Scholar 

  68. Desoye, G. & Nolan, C. J. The fetal glucose steal: an underappreciated phenomenon in diabetic pregnancy. Diabetologia 59, 1089–1094 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  69. Brown, L. D. & Hay, W. W. Jr Effect of hyperinsulinemia on amino acid utilization and oxidation independent of glucose metabolism in the ovine fetus. Am. J. Physiol. Endocrinol. Metab. 291, E1333–E1340 (2006).

    CAS  PubMed  Google Scholar 

  70. Milley, J. R. et al. The effect of insulin on ovine fetal oxygen extraction. Am. J. Obstet. Gynecol. 149, 673–678 (1984).

    CAS  PubMed  Google Scholar 

  71. Stonestreet, B. S. Effects of prolonged fetal hyperinsulinemia on plasma catecholamines, circulation and oxygen metabolism in utero. Dev. Pharmacol. Ther. 15, 35–44 (1990).

    CAS  PubMed  Google Scholar 

  72. Carson, B. S., Philipps, A. F., Simmons, M. A., Battaglia, F. C. & Meschia, G. Effects of a sustained insulin infusion upon glucose uptake and oxygenation of the ovine fetus. Pediatr. Res. 14, 147–152 (1980).

    CAS  PubMed  Google Scholar 

  73. Philipps, A. F., Dubin, J. W. & Raye, J. R. Fetal metabolic response to endogenous insulin release. Am. J. Obstet. Gynecol. 139, 441–445 (1981).

    CAS  PubMed  Google Scholar 

  74. Stonestreet, B. S., Goldstein, M., Oh, W. & Widness, J. A. Effects of prolonged hyperinsulinemia on erythropoiesis in fetal sheep. Am. J. Physiol. 257, R1199–R1204 (1989).

    CAS  PubMed  Google Scholar 

  75. Georgieff, M. K., Widness, J. A., Mills, M. M. & Stonestreet, B. S. The effect of prolonged intrauterine hyperinsulinemia on iron utilization in fetal sheep. Pediatr. Res. 26, 467–469 (1989).

    CAS  PubMed  Google Scholar 

  76. Hay, W. W. Jr Recent observations on the regulation of fetal metabolism by glucose. J. Physiol. 572, 17–24 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  77. Richardson, B. S., Ruttinger, S., Brown, H. K., Regnault, T. R. H. & de Vrijer, B. Maternal body mass index impacts fetal-placental size at birth and umbilical cord oxygen values with implications for regulatory mechanisms. Early Hum. Dev. 112, 42–47 (2017).

    PubMed  Google Scholar 

  78. Sosenko, I. R. et al. The infant of the diabetic mother: correlation of increased cord C-peptide levels with macrosomia and hypoglycemia. N. Engl. J. Med. 301, 859–862 (1979).

    CAS  PubMed  Google Scholar 

  79. Walsh, J. M., Segurado, R., Mahony, R. M., Foley, M. E. & McAuliffe, F. M. The effects of fetal gender on maternal and fetal insulin resistance. PLoS ONE 10, e0137215 (2015).

    PubMed  PubMed Central  Google Scholar 

  80. Shields, B. M. et al. Measurement of cord insulin and insulin-related peptides suggests that girls are more insulin resistant than boys at birth. Diabetes Care 30, 2661–2666 (2007).

    CAS  PubMed  Google Scholar 

  81. Wilkin, T. J. & Murphy, M. J. The gender insulin hypothesis: why girls are born lighter than boys, and the implications for insulin resistance. Int. J. Obes. 30, 1056–1061 (2006).

    CAS  Google Scholar 

  82. Dong, Y. et al. Large-for-gestational-age may be associated with lower fetal insulin sensitivity and beta-cell function linked to leptin. J. Clin. Endocrinol. Metab. 103, 3837–3844 (2018).

    PubMed  PubMed Central  Google Scholar 

  83. Wang, X. et al. Correlation between maternal and fetal insulin resistance in pregnant women with gestational diabetes mellitus. Clin. Lab. 64, 945–953 (2018).

    CAS  PubMed  Google Scholar 

  84. Hay, W. W. Jr, Meznarich, H. K., Sparks, J. W., Battaglia, F. C. & Meschia, G. Effect of insulin on glucose uptake in near-term fetal lambs. Proc. Soc. Exp. Biol. Med. 178, 557–564 (1985).

    CAS  PubMed  Google Scholar 

  85. Hay, W. W. Jr, Lin, C. C. & Meznarich, H. K. Effect of high levels of insulin on glucose utilization and glucose production in pregnant and nonpregnant sheep. Proc. Soc. Exp. Biol. Med. 189, 275–284 (1988).

    CAS  PubMed  Google Scholar 

  86. Dickinson, J. E., Meyer, B. A. & Palmer, S. M. Fetal vascular responses to maternal glucose administration in streptozocin-induced ovine diabetes mellitus. J. Obstet. Gynaecol. Res. 24, 325–333 (1998).

    CAS  PubMed  Google Scholar 

  87. Cook, G. A. & Park, E. A. Expression and regulation of carnitine palmitoyltransferase-Ialpha and -Ibeta genes. Am. J. Med. Sci. 318, 43–48 (1999).

    CAS  PubMed  Google Scholar 

  88. Nold, J. L. & Georgieff, M. K. Infants of diabetic mothers. Pediatr. Clin. North Am. 51, 619–637 (2004).

    PubMed  Google Scholar 

  89. Kiserud, T. Diabetes in pregnancy: scanning the wrong horizon? Ultrasound Obstet. Gynecol. 36, 266–267 (2010).

    CAS  PubMed  Google Scholar 

  90. Lund, A. et al. Altered development of fetal liver perfusion in pregnancies with pregestational diabetes. PLoS ONE 14, e0211788 (2019). Clinical data indicating that umbilical venous blood flow does not always keep pace with fetal growth in pregnancies with diabetes mellitus.

    CAS  PubMed  PubMed Central  Google Scholar 

  91. Neufeld, N. D., Scott, M. & Kaplan, S. A. Ontogeny of the mammalian insulin receptor. Studies of human and rat fetal liver plasma membranes. Dev. Biol. 78, 151–160 (1980).

    CAS  PubMed  Google Scholar 

  92. Bonder, M. J. et al. Genetic and epigenetic regulation of gene expression in fetal and adult human livers. BMC Genomics 15, 860 (2014).

    PubMed  PubMed Central  Google Scholar 

  93. McCormick, K. L. et al. Chronic hyperinsulinemia in the fetal rhesus monkey: effects on hepatic enzymes active in lipogenesis and carbohydrate metabolism. Diabetes 28, 1064–1068 (1979).

    CAS  PubMed  Google Scholar 

  94. Susa, J. B. et al. Chronic hyperinsulinemia in the fetal rhesus monkey: effects on fetal growth and composition. Diabetes 28, 1058–1063 (1979).

    CAS  PubMed  Google Scholar 

  95. Rozance, P. J. et al. Effects of chronic hyperinsulinemia on metabolic pathways and insulin signaling in the fetal liver. Am. J. Physiol. Endocrinol. Metab. 319, E721–E733 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  96. Radovic, S. M. et al. Insulin/IGF1 signaling regulates the mitochondrial biogenesis markers in steroidogenic cells of prepubertal testis, but not ovary. Biol. Reprod. 100, 253–267 (2019).

    PubMed  Google Scholar 

  97. Emery, J. L. Functional asymmetry of the liver. Ann. NY Acad. Sci. 111, 37–44 (1963).

    CAS  PubMed  Google Scholar 

  98. Cox, L. A. et al. Gene expression profile differences in left and right liver lobes from mid-gestation fetal baboons: a cautionary tale. J. Physiol. 572, 59–66 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  99. Kiserud, T., Rasmussen, S. & Skulstad, S. Blood flow and the degree of shunting through the ductus venosus in the human fetus. Am. J. Obstet. Gynecol. 182, 147–153 (2000).

    CAS  PubMed  Google Scholar 

  100. Botti, J. J., Edelstone, D. I., Caritis, S. N. & Mueller-Heubach, E. Portal venous blood flow distribution to liver and ductus venosus in newborn lambs. Am. J. Obstet. Gynecol. 144, 303–308 (1982).

    CAS  PubMed  Google Scholar 

  101. Edelstone, D. I., Rudolph, A. M. & Heymann, M. A. Liver and ductus venosus blood flows in fetal lambs in utero. Circ. Res. 42, 426–433 (1978).

    CAS  PubMed  Google Scholar 

  102. Rudolph, A. M. Hepatic and ductus venosus blood flows during fetal life. Hepatology 3, 254–258 (1983). Fundamental account of the distribution of umbilical venous blood flow and the shunting of blood through the ductus venosus and foramen ovale.

    CAS  PubMed  Google Scholar 

  103. Kunisaki, S. M. et al. Fetal hepatic haematopoiesis is modulated by arterial blood flow to the liver. Br. J. Haematol. 134, 330–332 (2006).

    PubMed  Google Scholar 

  104. Bristow, J., Rudolph, A. M., Itskovitz, J. & Barnes, R. Hepatic oxygen and glucose metabolism in the fetal lamb. Response to hypoxia. J. Clin. Invest. 71, 1047–1061 (1983).

    CAS  PubMed  PubMed Central  Google Scholar 

  105. Gruenwald, P. Degenerative changes in the right half of the liver resulting from intra-uterine anoxia. Am. J. Clin. Pathol. 19, 801–813 (1949).

    CAS  PubMed  Google Scholar 

  106. Kilavuz, O. & Vetter, K. Is the liver of the fetus the 4th preferential organ for arterial blood supply besides brain, heart, and adrenal glands? J. Perinat. Med. 27, 103–106 (1999). Suggests that the fetal liver is an important regulatory site for the distribution of oxygenated blood between other organs.

    CAS  PubMed  Google Scholar 

  107. Dubiel, M., Breborowicz, G. H. & Gudmundsson, S. Evaluation of fetal circulation redistribution in pregnancies with absent or reversed diastolic flow in the umbilical artery. Early Hum. Dev. 71, 149–156 (2003).

    PubMed  Google Scholar 

  108. Tchirikov, M., Schroder, H. J. & Hecher, K. Ductus venosus shunting in the fetal venous circulation: regulatory mechanisms, diagnostic methods and medical importance. Ultrasound Obstet. Gynecol. 27, 452–461 (2006).

    CAS  PubMed  Google Scholar 

  109. Ebbing, C., Rasmussen, S., Godfrey, K. M., Hanson, M. A. & Kiserud, T. Hepatic artery hemodynamics suggest operation of a buffer response in the human fetus. Reprod. Sci. 15, 166–178 (2008).

    PubMed  Google Scholar 

  110. Zvanca, M., Gielchinsky, Y., Abdeljawad, F., Bilardo, C. M. & Nicolaides, K. H. Hepatic artery Doppler in trisomy 21 and euploid fetuses at 11–13 weeks. Prenat. Diagn. 31, 22–27 (2011).

    PubMed  Google Scholar 

  111. Lund, A., Ebbing, C., Rasmussen, S., Kiserud, T. & Kessler, J. Maternal diabetes alters the development of ductus venosus shunting in the fetus. Acta Obstet. Gynecol. Scand. 97, 1032–1040 (2018).

    PubMed  Google Scholar 

  112. Shannon, K., Davis, J. C., Kitzmiller, J. L., Fulcher, S. A. & Koenig, H. M. Erythropoiesis in infants of diabetic mothers. Pediatr. Res. 20, 161–165 (1986).

    CAS  PubMed  Google Scholar 

  113. Salvesen, D. R., Brudenell, J. M., Snijders, R. J., Ireland, R. M. & Nicolaides, K. H. Fetal plasma erythropoietin in pregnancies complicated by maternal diabetes mellitus. Am. J. Obstet. Gynecol. 168, 88–94 (1993).

    CAS  PubMed  Google Scholar 

  114. Widness, J. A. et al. Increased erythropoiesis and elevated erythropoietin in infants born to diabetic mothers and in hyperinsulinemic rhesus fetuses. J. Clin. Invest. 67, 637–642 (1981).

    CAS  PubMed  PubMed Central  Google Scholar 

  115. Roberts, A. B., Mitchell, J. M. & Pattison, N. S. Fetal liver length in normal and isoimmunized pregnancies. Am. J. Obstet. Gynecol. 161, 42–46 (1989).

    CAS  PubMed  Google Scholar 

  116. Mirghani, H., Zayed, R., Thomas, L. & Agarwal, M. Gestational diabetes mellitus: fetal liver length measurements between 21and 24 weeks’ gestation. J. Clin. Ultrasound 35, 34–37 (2007).

    PubMed  Google Scholar 

  117. Boito, S. M., Struijk, P. C., Ursem, N. T., Stijnen, T. & Wladimiroff, J. W. Assessment of fetal liver volume and umbilical venous volume flow in pregnancies complicated by insulin-dependent diabetes mellitus. BJOG 110, 1007–1013 (2003).

    PubMed  Google Scholar 

  118. Naeye, R. L. Infants of diabetic mothers: a quantitative, morphologic study. Pediatrics 35, 980–988 (1965).

    CAS  PubMed  Google Scholar 

  119. Yamane, T. Cellular basis of embryonic hematopoiesis and its implications in prenatal erythropoiesis. Int. J. Mol. Sci. 21, 9346 (2020).

    CAS  PubMed Central  Google Scholar 

  120. Manesia, J. K. et al. Highly proliferative primitive fetal liver hematopoietic stem cells are fueled by oxidative metabolic pathways. Stem Cell Res. 15, 715–721 (2015).

    CAS  PubMed  Google Scholar 

  121. Ratajczak, J. et al. The role of insulin (INS) and insulin-like growth factor-I (IGF-I) in regulating human erythropoiesis. Studies in vitro under serum-free conditions-comparison to other cytokines and growth factors. Leukemia 12, 371–381 (1998).

    CAS  PubMed  Google Scholar 

  122. Perrine, S. P., Greene, M. F., Lee, P. D., Cohen, R. A. & Faller, D. V. Insulin stimulates cord blood erythroid progenitor growth: evidence for an aetiological role in neonatal polycythaemia. Br. J. Haematol. 64, 503–511 (1986).

    CAS  PubMed  Google Scholar 

  123. Kurtz, A., Jelkmann, W. & Bauer, C. Insulin stimulates erythroid colony formation independently of erythropoietin. Br. J. Haematol. 53, 311–316 (1983).

    CAS  PubMed  Google Scholar 

  124. Jelkmann, W. Physiology and pharmacology of erythropoietin. Transfus. Med. Hemother. 40, 302–309 (2013). A comprehensive discussion of erythropoietin.

    PubMed  PubMed Central  Google Scholar 

  125. Dame, C. et al. Erythropoietin mRNA expression in human fetal and neonatal tissue. Blood 92, 3218–3225 (1998).

    CAS  PubMed  Google Scholar 

  126. Dame, C. & Juul, S. E. The switch from fetal to adult erythropoiesis. Clin. Perinatol. 27, 507–526 (2000).

    CAS  PubMed  Google Scholar 

  127. Gonzalez, F. J., Xie, C. & Jiang, C. The role of hypoxia-inducible factors in metabolic diseases. Nat. Rev. Endocrinol. 15, 21–32 (2018).

    PubMed  PubMed Central  Google Scholar 

  128. Widness, J. A. et al. Temporal response of immunoreactive erythropoietin to acute hypoxemia in fetal sheep. Pediatr. Res. 20, 15–19 (1986).

    CAS  PubMed  Google Scholar 

  129. Schneider, H. & Malek, A. Lack of permeability of the human placenta for erythropoietin. J. Perinat. Med. 23, 71–76 (1995).

    CAS  PubMed  Google Scholar 

  130. Ruth, V., Widness, J. A., Clemons, G. & Raivio, K. O. Postnatal changes in serum immunoreactive erythropoietin in relation to hypoxia before and after birth. J. Pediatr. 116, 950–954 (1990).

    CAS  PubMed  Google Scholar 

  131. Thilaganathan, B., Salvesen, D. R., Abbas, A., Ireland, R. M. & Nicolaides, K. H. Fetal plasma erythropoietin concentration in red blood cell-isoimmunized pregnancies. Am. J. Obstet. Gynecol. 167, 1292–1297 (1992).

    CAS  PubMed  Google Scholar 

  132. Madazli, R. et al. The incidence of placental abnormalities, maternal and cord plasma malondialdehyde and vascular endothelial growth factor levels in women with gestational diabetes mellitus and nondiabetic controls. Gynecol. Obstet. Invest. 65, 227–232 (2008).

    CAS  PubMed  Google Scholar 

  133. Ibrahim, M. H., Moustafa, A. N., Saedii, A. A. F. & Hassan, E. E. Cord blood erythropoietin and cord blood nucleated red blood cells for prediction of adverse neonatal outcome associated with maternal obesity in term pregnancy: prospective cohort study. J. Matern. Fetal Neonatal Med. 30, 2237–2242 (2017).

    PubMed  Google Scholar 

  134. Amark, H., Sirotkina, M., Westgren, M., Papadogiannakis, N. & Persson, M. Is obesity in pregnancy associated with signs of chronic fetal hypoxia? Acta Obstet. Gynecol. Scand. 99, 1649–1656 (2020).

    PubMed  Google Scholar 

  135. Cetin, H., Yalaz, M., Akisu, M. & Kultursay, N. Polycythaemia in infants of diabetic mothers: beta-hydroxybutyrate stimulates erythropoietic activity. J. Int. Med. Res. 39, 815–821 (2011).

    CAS  PubMed  Google Scholar 

  136. Green, D. W., Khoury, J. & Mimouni, F. Neonatal hematocrit and maternal glycemic control in insulin-dependent diabetes. J. Pediatr. 120, 302–305 (1992).

    CAS  PubMed  Google Scholar 

  137. Mimouni, F. et al. Neonatal polycythemia in infants of insulin-dependent diabetic mothers. Obstet. Gynecol. 68, 370–372 (1986).

    CAS  PubMed  Google Scholar 

  138. Riskin, A. et al. Perinatal outcomes in infants of mothers with diabetes in pregnancy. Isr. Med. Assoc. J. 22, 569–575 (2020).

    PubMed  Google Scholar 

  139. Green, D. W. & Mimouni, F. Nucleated erythrocytes in healthy infants and in infants of diabetic mothers. J. Pediatr. 116, 129–131 (1990).

    CAS  PubMed  Google Scholar 

  140. Yeruchimovich, M., Mimouni, F. B., Green, D. W. & Dollberg, S. Nucleated red blood cells in healthy infants of women with gestational diabetes. Obstet. Gynecol. 95, 84–86 (2000).

    CAS  PubMed  Google Scholar 

  141. Tsakalakos, N., Macfarlane, C. M. & Taljaard, J. J. Evidence of hypoxaemia and distribution of minor haemoglobin components in the cord blood of neonates born to diabetic mothers. S. Afr. Med. J. 67, 628–632 (1985).

    CAS  PubMed  Google Scholar 

  142. Bard, H. & Prosmanne, J. Relative rates of fetal hemoglobin and adult hemoglobin synthesis in cord blood of infants of insulin-dependent diabetic mothers. Pediatrics 75, 1143–1147 (1985).

    CAS  PubMed  Google Scholar 

  143. Perrine, S. P., Greene, M. F. & Faller, D. V. Delay in the fetal globin switch in infants of diabetic mothers. N. Engl. J. Med. 312, 334–338 (1985).

    CAS  PubMed  Google Scholar 

  144. Sosenko, J. M. et al. Umbilical cord glycosylated hemoglobin in infants of diabetic mothers: relationships to neonatal hypoglycemia, macrosomia, and cord serum C-peptide. Diabetes Care 5, 566–570 (1982).

    CAS  PubMed  Google Scholar 

  145. Salvesen, D. R., Freeman, J., Brudenell, J. M. & Nicolaides, K. H. Prediction of fetal acidaemia in pregnancies complicated by maternal diabetes mellitus by biophysical profile scoring and fetal heart rate monitoring. Br. J. Obstet. Gynaecol. 100, 227–233 (1993).

    CAS  PubMed  Google Scholar 

  146. Salvesen, D. R., Brudenell, M. J. & Nicolaides, K. H. Fetal polycythemia and thrombocytopenia in pregnancies complicated by maternal diabetes mellitus. Am. J. Obstet. Gynecol. 166, 1287–1293 (1992).

    CAS  PubMed  Google Scholar 

  147. Russell, N. E., Higgins, M. F., Kinsley, B. F., Foley, M. E. & McAuliffe, F. M. Heart rate variability in neonates of type 1 diabetic pregnancy. Early Hum. Dev. 92, 51–55 (2016).

    PubMed  Google Scholar 

  148. Bradley, R. J., Brudenell, J. M. & Nicolaides, K. H. Fetal acidosis and hyperlacticaemia diagnosed by cordocentesis in pregnancies complicated by maternal diabetes mellitus. Diabet. Med. 8, 464–468 (1991).

    CAS  PubMed  Google Scholar 

  149. Salvesen, D. R., Brudenell, J. M., Proudler, A. J., Crook, D. & Nicolaides, K. H. Fetal pancreatic beta-cell function in pregnancies complicated by maternal diabetes mellitus: relationship to fetal acidemia and macrosomia. Am. J. Obstet. Gynecol. 168, 1363–1369 (1993).

    CAS  PubMed  Google Scholar 

  150. Robillard, J. E., Sessions, C., Kennedy, R. L. & Smith, F. G. Jr Metabolic effects of constant hypertonic glucose infusion in well-oxygenated fetuses. Am. J. Obstet. Gynecol. 130, 199–203 (1978).

    CAS  PubMed  Google Scholar 

  151. Desoye, G. & Wells, J. C. K. Pregnancies in diabetes and obesity: the capacity-load model of placental adaptation. Diabetes 70, 823–830 (2021). Introduces the concept of limitations to placental adaptation as a cause of adverse pregnancy outcomes.

    CAS  PubMed  PubMed Central  Google Scholar 

  152. Desoye, G. & Shafrir, E. Placental metabolism and its regulation in health and diabetes. Mol. Asp. Med. 15, 505–682 (1994).

    CAS  Google Scholar 

  153. Higgins, M., Felle, P., Mooney, E. E., Bannigan, J. & McAuliffe, F. M. Stereology of the placenta in type 1 and type 2 diabetes. Placenta 32, 564–569 (2011).

    CAS  PubMed  Google Scholar 

  154. Carrasco-Wong, I. et al. Placental structure in gestational diabetes mellitus. Biochim. Biophys. Acta Mol. Basis Dis. 1866, 165535 (2020).

    CAS  PubMed  Google Scholar 

  155. Calderon, I. M. et al. Morphometric study of placental villi and vessels in women with mild hyperglycemia or gestational or overt diabetes. Diabetes Res. Clin. Pract. 78, 65–71 (2007).

    PubMed  Google Scholar 

  156. Mayhew, T. M., Sorensen, F. B., Klebe, J. G. & Jackson, M. R. The effects of mode of delivery and sex of newborn on placental morphology in control and diabetic pregnancies. J. Anat. 183, 545–552 (1993).

    PubMed  PubMed Central  Google Scholar 

  157. Dahlstrom, J. E., Nolan, C. J. & Desoye, G. in Benirschke’s Pathology of the Human Placenta Ch. 20 (eds Baergen, R. N., Burton, G. J., & Kaplan, C. G.) 555–575 (Springer Nature, 2022).

  158. Gauster, M., Desoye, G., Totsch, M. & Hiden, U. The placenta and gestational diabetes mellitus. Curr. Diab. Rep. 12, 16–23 (2012).

    CAS  PubMed  Google Scholar 

  159. Mayhew, T. M., Sorensen, F. B., Klebe, J. G. & Jackson, M. R. Oxygen diffusive conductance in placentae from control and diabetic women. Diabetologia 36, 955–960 (1993). Demonstrates that hypervascularization of the placenta, and associated anatomical changes, facilitates oxygen diffusion.

    CAS  PubMed  Google Scholar 

  160. Jauniaux, E. & Burton, G. J. Villous histomorphometry and placental bed biopsy investigation in type I diabetic pregnancies. Placenta 27, 468–474 (2006).

    CAS  PubMed  Google Scholar 

  161. Nelson, S. M., Coan, P. M., Burton, G. J. & Lindsay, R. S. Placental structure in type 1 diabetes: relation to fetal insulin, leptin, and IGF-I. Diabetes 58, 2634–2641 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  162. Jackson, M. R., Mayhew, T. M. & Haas, J. D. On the factors which contribute to thinning of the villous membrane in human placentae at high altitude. I. Thinning and regional variation in thickness of trophoblast. Placenta 9, 1–8 (1988).

    CAS  PubMed  Google Scholar 

  163. Jackson, M. R., Mayhew, T. M. & Haas, J. D. On the factors which contribute to thinning of the villous membrane in human placentae at high altitude. II. An increase in the degree of peripheralization of fetal capillaries. Placenta 9, 9–18 (1988).

    CAS  PubMed  Google Scholar 

  164. Reshetnikova, O. S., Burton, G. J. & Milovanov, A. P. Effects of hypobaric hypoxia on the fetoplacental unit: the morphometric diffusing capacity of the villous membrane at high altitude. Am. J. Obstet. Gynecol. 171, 1560–1565 (1994).

    CAS  PubMed  Google Scholar 

  165. Reshetnikova, O. S., Burton, G. J., Milovanov, A. P. & Fokin, E. I. Increased incidence of placental chorioangioma in high-altitude pregnancies: hypobaric hypoxia as a possible etiologic factor. Am. J. Obstet. Gynecol. 174, 557–561 (1996).

    CAS  PubMed  Google Scholar 

  166. Bjork, O. & Persson, B. Villous structure in different parts of the cotyledon in placentas of insulin-dependent diabetic women. A morphometric study. Acta Obstet. Gynecol. Scand. 63, 37–43 (1984).

    CAS  PubMed  Google Scholar 

  167. Moeller, S. L. et al. Anemia in late pregnancy induces an adaptive response in fetoplacental vascularization. Placenta 80, 49–58 (2019).

    PubMed  Google Scholar 

  168. Burton, G. J., Charnock-Jones, D. S. & Jauniaux, E. Regulation of vascular growth and function in the human placenta. Reproduction 138, 895–902 (2009).

    CAS  PubMed  Google Scholar 

  169. Cvitic, S., Desoye, G. & Hiden, U. Glucose, insulin, and oxygen interplay in placental hypervascularisation in diabetes mellitus. Biomed. Res. Int. 2014, 145846 (2014).

    PubMed  PubMed Central  Google Scholar 

  170. Hiden, U. et al. Fetal insulin and IGF-II contribute to gestational diabetes mellitus (GDM)-associated up-regulation of membrane-type matrix metalloproteinase 1 (MT1-MMP) in the human feto-placental endothelium. J. Clin. Endocrinol. Metab. 97, 3613–3621 (2012).

    CAS  PubMed  Google Scholar 

  171. Lassance, L. et al. Hyperinsulinemia stimulates angiogenesis of human fetoplacental endothelial cells: a possible role of insulin in placental hypervascularization in diabetes mellitus. J. Clin. Endocrinol. Metab. 98, E1438–E1447 (2013).

    CAS  PubMed  Google Scholar 

  172. Loegl, J. et al. GDM alters paracrine regulation of feto-placental angiogenesis via the trophoblast. Lab. Invest. 97, 409–418 (2017).

    CAS  PubMed  Google Scholar 

  173. Loegl, J. et al. Hofbauer cells of M2a, M2b and M2c polarization may regulate feto-placental angiogenesis. Reproduction 152, 447–455 (2016).

    CAS  PubMed  Google Scholar 

  174. Roberts, K. A. et al. Placental structure and inflammation in pregnancies associated with obesity. Placenta 32, 247–254 (2011).

    CAS  PubMed  Google Scholar 

  175. Brouwers, L. et al. Association of maternal prepregnancy body mass index with placental histopathological characteristics in uncomplicated term pregnancies. Pediatr. Dev. Pathol. 22, 45–52 (2019).

    PubMed  Google Scholar 

  176. Camaschella, C. & Pagani, A. Iron and erythropoiesis: a dual relationship. Int. J. Hematol. 93, 21–26 (2011).

    CAS  PubMed  Google Scholar 

  177. Nogueira-Pedro, A., dos Santos, G. G., Oliveira, D. C., Hastreiter, A. A. & Fock, R. A. Erythropoiesis in vertebrates: from ontogeny to clinical relevance. Front. Biosci. 8, 100–112 (2016).

    Google Scholar 

  178. McArdle, H. J., Andersen, H. S., Jones, H. & Gambling, L. Copper and iron transport across the placenta: regulation and interactions. J. Neuroendocrinol. 20, 427–431 (2008).

    CAS  PubMed  Google Scholar 

  179. Petry, C. D. et al. Placental transferrin receptor in diabetic pregnancies with increased fetal iron demand. Am. J. Physiol. 267, E507–E514 (1994).

    CAS  PubMed  Google Scholar 

  180. Georgieff, M. K., Petry, C. D., Mills, M. M., McKay, H. & Wobken, J. D. Increased N-glycosylation and reduced transferrin-binding capacity of transferrin receptor isolated from placentae of diabetic women. Placenta 18, 563–568 (1997).

    CAS  PubMed  Google Scholar 

  181. McDonald, E. A. et al. Iron transport across the human placenta is regulated by hepcidin. Pediatr. Res. https://doi.org/10.1038/s41390-020-01201-y (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  182. Yang, A. et al. Expression of hepcidin and ferroportin in the placenta, and ferritin and transferrin receptor 1 levels in maternal and umbilical cord blood in pregnant women with and without gestational diabetes. Int. J. Env. Res. Public Health 13, 766 (2016).

    Google Scholar 

  183. Jones, A. D. et al. Maternal obesity during pregnancy is negatively associated with maternal and neonatal iron status. Eur. J. Clin. Nutr. 70, 918–924 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  184. Phillips, A. K. et al. Neonatal iron status is impaired by maternal obesity and excessive weight gain during pregnancy. J. Perinatol. 34, 513–518 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  185. Korlesky, C. et al. Cord blood erythropoietin and hepcidin reflect lower newborn iron stores due to maternal obesity during pregnancy. Am. J. Perinatol. 36, 511–516 (2019).

    PubMed  Google Scholar 

  186. Georgieff, M. K. et al. Abnormal iron distribution in infants of diabetic mothers: spectrum and maternal antecedents. J. Pediatr. 117, 455–461 (1990).

    CAS  PubMed  Google Scholar 

  187. Petry, C. D. et al. Iron deficiency of liver, heart, and brain in newborn infants of diabetic mothers. J. Pediatr. 121, 109–114 (1992).

    CAS  PubMed  Google Scholar 

  188. Giussani, D. A. The fetal brain sparing response to hypoxia: physiological mechanisms. J. Physiol. 594, 1215–1230 (2016). An excellent review of the physiological responses to fetal hypoxia.

    CAS  PubMed  PubMed Central  Google Scholar 

  189. Wei, Z., Mu, M., Li, M., Li, J. & Cui, Y. Color Doppler ultrasound detection of hemodynamic changes in pregnant women with GDM and analysis of their influence on pregnancy outcomes. Am. J. Transl. Res. 13, 3330–3336 (2021).

    PubMed  PubMed Central  Google Scholar 

  190. Challis, D. E., Warren, P. S. & Gill, R. W. The significance of high umbilical venous blood flow measurements in a high-risk population. J. Ultrasound Med. 14, 907–912 (1995).

    CAS  PubMed  Google Scholar 

  191. Olofsson, P., Lingman, G., Marsal, K. & Sjoberg, N. O. Fetal blood flow in diabetic pregnancy. J. Perinat. Med. 15, 545–553 (1987).

    CAS  PubMed  Google Scholar 

  192. Rurak, D. W. & Gruber, N. C. The effect of neuromuscular blockade on oxygen consumption and blood gases in the fetal lamb. Am. J. Obstet. Gynecol. 145, 258–262 (1983).

    CAS  PubMed  Google Scholar 

  193. Richardson, B. S., Hohimer, A. R., Bissonnette, J. M. & Machida, C. M. Insulin hypoglycemia, cerebral metabolism, and neural function in fetal lambs. Am. J. Physiol. 248, R72–R77 (1985).

    CAS  PubMed  Google Scholar 

  194. Carroll, L., Gallagher, L. & Smith, V. Risk factors for reduced fetal movements in pregnancy: a systematic review and meta-analysis. Eur. J. Obstet. Gynecol. Reprod. Biol. 243, 72–82 (2019).

    PubMed  Google Scholar 

  195. Yates, D. T. et al. Hypoxaemia-induced catecholamine secretion from adrenal chromaffin cells inhibits glucose-stimulated hyperinsulinaemia in fetal sheep. J. Physiol. 590, 5439–5447 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  196. Chen, X. et al. Enhanced insulin secretion responsiveness and islet adrenergic desensitization after chronic norepinephrine suppression is discontinued in fetal sheep. Am. J. Physiol. Endocrinol. Metab. 306, E58–E64 (2014).

    CAS  PubMed  Google Scholar 

  197. Tchirikov, M., Kertschanska, S., Sturenberg, H. J. & Schroder, H. J. Liver blood perfusion as a possible instrument for fetal growth regulation. Placenta 23 (Suppl. A), S153–S158 (2002).

    PubMed  Google Scholar 

  198. Tchirikov, M., Kertschanska, S. & Schroder, H. J. Obstruction of ductus venosus stimulates cell proliferation in organs of fetal sheep. Placenta 22, 24–31 (2001). Demonstrates that liver perfusion contributes to regulation of fetal organ growth.

    CAS  PubMed  Google Scholar 

  199. Economides, D. L., Proudler, A. & Nicolaides, K. H. Plasma insulin in appropriate- and small-for-gestational-age fetuses. Am. J. Obstet. Gynecol. 160, 1091–1094 (1989).

    CAS  PubMed  Google Scholar 

  200. Giudice, L. C. et al. Insulin-like growth factors and their binding proteins in the term and preterm human fetus and neonate with normal and extremes of intrauterine growth. J. Clin. Endocrinol. Metab. 80, 1548–1555 (1995).

    CAS  PubMed  Google Scholar 

  201. Hooper, S. B., Bocking, A. D., White, S., Challis, J. R. & Han, V. K. DNA synthesis is reduced in selected fetal tissues during prolonged hypoxemia. Am. J. Physiol. 261, R508–R514 (1991).

    CAS  PubMed  Google Scholar 

  202. Gutaj, P. & Wender-Ozegowska, E. Diagnosis and management of IUGR in pregnancy complicated by type 1 diabetes mellitus. Curr. Diab. Rep. 16, 39 (2016).

    PubMed  PubMed Central  Google Scholar 

  203. Jensen, D. M. et al. Microalbuminuria, preeclampsia, and preterm delivery in pregnant women with type 1 diabetes: results from a nationwide Danish study. Diabetes Care 33, 90–94 (2010).

    PubMed  Google Scholar 

  204. White, P. Pregnancy complicating diabetes. Am. J. Med. 7, 609–616 (1949).

    CAS  PubMed  Google Scholar 

  205. Marchi, J., Berg, M., Dencker, A., Olander, E. K. & Begley, C. Risks associated with obesity in pregnancy, for the mother and baby: a systematic review of reviews. Obes. Rev. 16, 621–638 (2015).

    CAS  PubMed  Google Scholar 

  206. Mathiesen, E. R., Ringholm, L. & Damm, P. Stillbirth in diabetic pregnancies. Best Pract. Res. Clin. Obstet. Gynaecol. 25, 105–111 (2011).

    PubMed  Google Scholar 

  207. Ptacek, I. et al. Quantitative assessment of placental morphology may identify specific causes of stillbirth. BMC Clin. Pathol. 16, 1 (2016).

    PubMed  PubMed Central  Google Scholar 

  208. Dudley, D. J. Diabetic-associated stillbirth: incidence, pathophysiology, and prevention. Obstet. Gynecol. Clin. North Am. 34, 293–307 (2007).

    PubMed  Google Scholar 

  209. Feig, D. S. & Palda, V. A. Type 2 diabetes in pregnancy: a growing concern. Lancet 359, 1690–1692 (2002).

    PubMed  Google Scholar 

  210. Westgate, J. A. et al. Hyperinsulinemia in cord blood in mothers with type 2 diabetes and gestational diabetes mellitus in New Zealand. Diabetes Care 29, 1345–1350 (2006).

    PubMed  Google Scholar 

  211. Norgan, N. G. The beneficial effects of body fat and adipose tissue in humans. Int. J. Obes. Relat. Metab. Disord. 21, 738–746 (1997).

    CAS  PubMed  Google Scholar 

  212. Wells, J. C. K. The Evolutionary Biology of Human Body Fatness: Thrift and Control (Cambridge Univ. Press, 2010).

  213. Kuzawa, C. W. Adipose tissue in human infancy and childhood: an evolutionary perspective. Am. J. Phys. Anthropol. 107 (Suppl. 27), 177–209 (1998).

    Google Scholar 

  214. Wesolowski, S. R. et al. Switching obese mothers to a healthy diet improves fetal hypoxemia, hepatic metabolites, and lipotoxicity in non-human primates. Mol. Metab. 18, 25–41 (2018). Shows that fetal hypoxia can be reversed by improving the quality of maternal diet and might establish the scientific basis for future dietary interventions to improve fetal outcome in pregnancies complicated by diabetes mellitus and/or pregnancies in people with obesity.

    CAS  PubMed  PubMed Central  Google Scholar 

  215. Kiserud, T. Physiology of the fetal circulation. Semin. Fetal Neonatal Med. 10, 493–503 (2005).

    PubMed  Google Scholar 

  216. Kiserud, T. & Acharya, G. The fetal circulation. Prenat. Diagn. 24, 1049–1059 (2004). An excellent account of the human fetal circulation.

    PubMed  Google Scholar 

  217. Edelstone, D. I. & Rudolph, A. M. Preferential streaming of ductus venosus blood to the brain and heart in fetal lambs. Am. J. Physiol. 237, H724–H729 (1979).

    CAS  PubMed  Google Scholar 

  218. Kiserud, T., Kessler, J., Ebbing, C. & Rasmussen, S. Ductus venosus shunting in growth-restricted fetuses and the effect of umbilical circulatory compromise. Ultrasound Obstet. Gynecol. 28, 143–149 (2006).

    CAS  PubMed  Google Scholar 

  219. Bellotti, M. et al. Simultaneous measurements of umbilical venous, fetal hepatic, and ductus venosus blood flow in growth-restricted human fetuses. Am. J. Obstet. Gynecol. 190, 1347–1358 (2004).

    PubMed  Google Scholar 

  220. Ganong, W. F. Ganong’s Review of Medical Physiology 20th edn (McGraw Hill, 2001).

  221. Philipps, A. F., Widness, J. A., Garcia, J. F., Raye, J. R. & Schwartz, R. Erythropoietin elevation in the chronically hyperglycemic fetal lamb. Proc. Soc. Exp. Biol. Med. 170, 42–47 (1982).

    CAS  PubMed  Google Scholar 

  222. Wong, S. F., Chan, F. Y., Cincotta, R. B., McIntyre, D. H. & Stone, M. Use of umbilical artery Doppler velocimetry in the monitoring of pregnancy in women with pre-existing diabetes. Aust. N. Z. J. Obstet. Gynaecol. 43, 302–306 (2003).

    PubMed  Google Scholar 

  223. Haugen, G. et al. Fetal liver-sparing cardiovascular adaptations linked to mother’s slimness and diet. Circ. Res. 96, 12–14 (2005).

    CAS  PubMed  Google Scholar 

  224. Barbera, A. et al. Relationship of umbilical vein blood flow to growth parameters in the human fetus. Am. J. Obstet. Gynecol. 181, 174–179 (1999).

    CAS  PubMed  Google Scholar 

  225. Cohn, H. E., Sacks, E. J., Heymann, M. A. & Rudolph, A. M. Cardiovascular responses to hypoxemia and acidemia in fetal lambs. Am. J. Obstet. Gynecol. 120, 817–824 (1974).

    CAS  PubMed  Google Scholar 

  226. Jensen, A. & Berger, R. Fetal circulatory responses to oxygen lack. J. Dev. Physiol. 16, 181–207 (1991).

    CAS  PubMed  Google Scholar 

  227. Milley, J. R. Effect of insulin on the distribution of cardiac output in the fetal lamb. Pediatr. Res. 22, 168–172 (1987).

    CAS  PubMed  Google Scholar 

  228. Stonestreet, B. S., Widness, J. A. & Berard, D. J. Circulatory and metabolic effects of hypoxia in the hyperinsulinemic ovine fetus. Pediatr. Res. 38, 67–75 (1995).

    CAS  PubMed  Google Scholar 

  229. Pilania, R., Sikka, P., Rohit, M. K., Suri, V. & Kumar, P. Fetal cardiodynamics by echocardiography in insulin dependent maternal diabetes and its correlation with pregnancy outcome. J. Clin. Diagn. Res. 10, QC01–QC04 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  230. Lisowski, L. A., Verheijen, P. M., De Smedt, M. M., Visser, G. H. & Meijboom, E. J. Altered fetal circulation in type-1 diabetic pregnancies. Ultrasound Obstet. Gynecol. 21, 365–369 (2003). Finds significant differences in the fetal circulation in pregnancies with T1DM and those without T1DM and suggests the existence of compensatory mechanisms.

    CAS  PubMed  Google Scholar 

  231. Bravo-Valenzuela, N. J. et al. Fetal cardiac function and ventricular volumes determined by three-dimensional ultrasound using STIC and VOCAL methods in fetuses from pre-gestational diabetic women. Pediatr. Cardiol. 41, 1125–1134 (2020).

    PubMed  Google Scholar 

  232. Winter, J. et al. Depressed left and right ventricular cardiac output in fetuses of diabetic mothers. Echo Res. Pract. 5, 19–26 (2018).

    Google Scholar 

  233. Brooks, G. A. The science and translation of lactate shuttle theory. Cell Metab. 27, 757–785 (2018).

    CAS  PubMed  Google Scholar 

  234. Gladden, L. B. Lactate metabolism: a new paradigm for the third millennium. J. Physiol. 558, 5–30 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  235. Ma, L. N., Huang, X. B., Muyayalo, K. P., Mor, G. & Liao, A. H. Lactic acid: a novel signaling molecule in early pregnancy? Front. Immunol. 11, 279 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  236. Hunt, T. K., Aslam, R., Hussain, Z. & Beckert, S. Lactate, with oxygen, incites angiogenesis. Adv. Exp. Med. Biol. 614, 73–80 (2008).

    CAS  PubMed  Google Scholar 

  237. Di Renzo, G. C., Rosati, A., Sarti, R. D., Cruciani, L. & Cutuli, A. M. Does fetal sex affect pregnancy outcome? Gend. Med. 4, 19–30 (2007).

    PubMed  Google Scholar 

  238. van Poppel, M. N., Eder, M., Lang, U. & Desoye, G. Sex-specific associations of insulin-like peptides in cord blood with size at birth. Clin. Endocrinol. 89, 187–193 (2018).

    Google Scholar 

  239. Jagota, D. et al. Sex differences in fetal Doppler parameters during gestation. Biol. Sex. Differ. 12, 26 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  240. Basak, K., Luis Dean-Ben, X., Gottschalk, S., Reiss, M. & Razansky, D. Non-invasive determination of murine placental and foetal functional parameters with multispectral optoacoustic tomography. Light Sci. Appl. 8, 71 (2019).

    PubMed  PubMed Central  Google Scholar 

  241. Arthuis, C. J. et al. Real-time monitoring of placental oxygenation during maternal hypoxia and hyperoxygenation using photoacoustic imaging. PLoS ONE 12, e0169850 (2017).

    PubMed  PubMed Central  Google Scholar 

  242. Karlas, A., Pleitez, M. A., Aguirre, J. & Ntziachristos, V. Optoacoustic imaging in endocrinology and metabolism. Nat. Rev. Endocrinol. 17, 323–335 (2021).

    PubMed  Google Scholar 

  243. Schrauben, E. M. et al. Technique for comprehensive fetal hepatic blood flow assessment in sheep using 4D flow MRI. J. Physiol. 598, 3555–3567 (2020).

    CAS  PubMed  Google Scholar 

  244. Roberts, V. H. et al. Quantitative assessment of placental perfusion by contrast-enhanced ultrasound in macaques and human subjects. Am. J. Obstet. Gynecol. 214, 369.e1–8 (2016).

    PubMed  Google Scholar 

  245. Anderson, K. B. et al. Placental transverse relaxation time (T2) estimated by MRI: normal values and the correlation with birthweight. Acta Obstet. Gynecol. Scand. 100, 934–940 (2020).

    PubMed  Google Scholar 

  246. Sinding, M. et al. Prediction of low birth weight: comparison of placental T2* estimated by MRI and uterine artery pulsatility index. Placenta 49, 48–54 (2017).

    PubMed  Google Scholar 

  247. Sorensen, A., Hutter, J., Seed, M., Grant, P. E. & Gowland, P. T2*-weighted placental MRI: basic research tool or emerging clinical test for placental dysfunction? Ultrasound Obstet. Gynecol. 55, 293–302 (2020).

    CAS  PubMed  Google Scholar 

  248. Seidmann, L., Kamyshanskiy, Y., Wagner, D. C., Zimmer, S. & Roth, W. CD15 immunostaining improves placental diagnosis of fetal hypoxia. Placenta 105, 41–49 (2021).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors thank P. Damm, Rigshospitalet, University of Copenhagen, Denmark, for critical reading of the manuscript and valuable input. The authors also thank the reviewers for their helpful comments and suggestions on a previous version of the manuscript. G.D. was supported by a visiting professorship grant from the Danish Diabetes Academy, which is funded by the Novo Nordisk Foundation, grant number NNF17SA0031406. G.D also received funds from the Österreichische Nationalbank (Anniversary Fund, project number: 17950).

Author information

Authors and Affiliations

Authors

Contributions

The authors contributed equally to all aspects of the article.

Corresponding author

Correspondence to Gernot Desoye.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Endocrinology thanks Helen Murphy, who co-reviewed the manuscript with Tara Lee, Thomas Jansson and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Glossary

Fetal macrosomia

Fetal overgrowth often found in diabetes mellitus and obesity resulting in excessive birthweight, defined as either >4,000 g or >4,500 g depending on the clinical centre.

Small for gestational age

(SGA). Commonly defined as growth at the 10th percentile or less for weight of all fetuses at that gestational age.

Fetal growth restriction

(FGR). Refers to a fetus that does not achieve the expected in utero growth potential owing to genetic or environmental factors.

Metabolically induced oxygen deficit

Hypoxia due to an imbalance between fetal oxygen demand and oxygen supply owing to an increase in fetal metabolic rate.

Cytotrophoblast

Mononuclear cell of the trophoblast cell lineage, which can either fuse to form a syncytium, the placental surface exposed to maternal blood, or invade the maternal decidua.

Cytotrophoblast invasion

The process by which fetal trophoblast cells invade the maternal decidua to anchor the feto-placental unit and to transform the spiral arteries into low-resistance vessels.

Atheromas

Degenerations of the walls of the arteries caused by accumulated fatty deposits and scar tissue.

Pulsatility indices

The uterine artery pulsatility index is a measure of uteroplacental perfusion derived from measurements of flow velocity made with Doppler ultrasound.

Partial pressure of oxygen

(pO2). The independent pressure exerted by an individual gas (here oxygen) in a mixture of gases.

Carotid chemoreflex

Reflex activation of the sympathetic nervous system in response to an alteration in the composition of the blood sensed by receptors in the carotid bodies.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Desoye, G., Carter, A.M. Fetoplacental oxygen homeostasis in pregnancies with maternal diabetes mellitus and obesity. Nat Rev Endocrinol 18, 593–607 (2022). https://doi.org/10.1038/s41574-022-00717-z

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41574-022-00717-z

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing