Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

A parsimonious description of global functional brain organization in three spatiotemporal patterns

Abstract

Resting-state functional magnetic resonance imaging (MRI) has yielded seemingly disparate insights into large-scale organization of the human brain. The brain’s large-scale organization can be divided into two broad categories: zero-lag representations of functional connectivity structure and time-lag representations of traveling wave or propagation structure. In this study, we sought to unify observed phenomena across these two categories in the form of three low-frequency spatiotemporal patterns composed of a mixture of standing and traveling wave dynamics. We showed that a range of empirical phenomena, including functional connectivity gradients, the task-positive/task-negative anti-correlation pattern, the global signal, time-lag propagation patterns, the quasiperiodic pattern and the functional connectome network structure, are manifestations of these three spatiotemporal patterns. These patterns account for much of the global spatial structure that underlies functional connectivity analyses and unifies phenomena in resting-state functional MRI previously thought distinct.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Simulation to analyze standing and traveling wave oscillations.
Fig. 2: Form and properties of three prominent spatiotemporal patterns.
Fig. 3: Form and properties of three prominent FC topographies.
Fig. 4: Similar propagation patterns between average latency structure and pattern one.
Fig. 5: The task-positive/task-negative pattern, primary FC gradient and pattern two describe the same spatiotemporal pattern.
Fig. 6: The network structure of FC is explained by the three spatiotemporal patterns.

Similar content being viewed by others

Data availability

Data from the Human Connectome Project (HCP) are publicly available at http://www.humanconnectomeproject.org/data/. Instructions for accessing HCP data can be found at https://www.humanconnectome.org/. All metadata are provided at https://github.com/tsb46/BOLD_WAVES.

Code availability

All code for pre-processing and analysis is provided at https://github.com/tsb46/BOLD_WAVES.

References

  1. Biswal, B., Yetkin, F. Z., Haughton, V. M. & Hyde, J. S. Functional connectivity in the motor cortex of resting human brain using echo-planar MRI. Magn. Reson. Med. 34, 537–541 (1995).

    Article  CAS  PubMed  Google Scholar 

  2. Margulies, D. S. et al. Situating the default-mode network along a principal gradient of macroscale cortical organization. Proc. Natl Acad. Sci. USA 113, 12574–12579 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Smith, S. M. et al. Correspondence of the brain’s functional architecture during activation and rest. Proc. Natl Acad. Sci. USA 106, 13040–13045 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Yeo, B. T. et al. The organization of the human cerebral cortex estimated by intrinsic functional connectivity. J. Neurophysiol. 106, 1125–1165 (2011).

    Article  PubMed  Google Scholar 

  5. Liu, T. T., Nalci, A. & Falahpour, M. The global signal in fMRI: nuisance or information? Neuroimage 150, 213–229 (2017).

    Article  PubMed  Google Scholar 

  6. Fox, M. D. et al. The human brain is intrinsically organized into dynamic, anticorrelated functional networks. Proc. Natl Acad. Sci. USA 102, 9673–9678 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Mitra, A., Snyder, A. Z., Hacker, C. D. & Raichle, M. E. Lag structure in resting-state fMRI. J. Neurophysiol. 111, 2374–2391 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Raut, R. V. et al. Global waves synchronize the brain’s functional systems with fluctuating arousal. Sci. Adv. 7, eabf2709 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  9. Yousefi, B. & Keilholz, S. Propagating patterns of intrinsic activity along macroscale gradients coordinate functional connections across the whole brain. Neuroimage 231, 117827 (2021).

    Article  PubMed  Google Scholar 

  10. Gu, Y. et al. Brain activity fluctuations propagate as waves traversing the cortical hierarchy. Cereb. Cortex 31, 3986–4005 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  11. Tong, Y., Hocke, L. M., Licata, S. C. & deB. Frederick, B. Low-frequency oscillations measured in the periphery with near-infrared spectroscopy are strongly correlated with blood oxygen level-dependent functional magnetic resonance imaging signals. J. Biomed. Opt. 17, 106004 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  12. Abbas, A. et al. Quasi-periodic patterns contribute to functional connectivity in the brain. Neuroimage 191, 193–204 (2019).

    Article  PubMed  Google Scholar 

  13. Hannachi, A., Jolliffe, I. T. & Stephenson, D. B. Empirical orthogonal functions and related techniques in atmospheric science: a review. Int. J. Climatol. 27, 1119–1152 (2007).

    Article  Google Scholar 

  14. Feeny, B. F. A complex orthogonal decomposition for wave motion analysis. J. Sound Vib. 310, 77–90 (2008).

    Article  Google Scholar 

  15. Liu, X. & Duyn, J. H. Time-varying functional network information extracted from brief instances of spontaneous brain activity. Proc. Natl Acad. Sci. USA 110, 4392–4397 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Smith, S. M. et al. Temporally-independent functional modes of spontaneous brain activity. Proc. Natl Acad. Sci. USA 109, 3131–3136 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Vidaurre, D., Smith, S. M. & Woolrich, M. W. Brain network dynamics are hierarchically organized in time. Proc. Natl Acad. Sci. USA 114, 12827–12832 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Majeed, W. et al. Spatiotemporal dynamics of low frequency BOLD fluctuations in rats and humans. Neuroimage 54, 1140–1150 (2011).

    Article  PubMed  Google Scholar 

  19. Li, J. et al. Topography and behavioral relevance of the global signal in the human brain. Sci. Rep. 9, 14286 (2019).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  20. Cattell, R. B. The description of personality: basic traits resolved into clusters. J. Abnorm. Soc. Psychol. 38, 476–506 (1943).

    Article  Google Scholar 

  21. Ecker, C., Reynaud, E., Williams, S. C. & Brammer, M. J. Detecting functional nodes in large-scale cortical networks with functional magnetic resonance imaging: a principal component analysis of the human visual system. Hum. Brain Mapp. 28, 817–834 (2007).

    Article  PubMed  Google Scholar 

  22. Stetter, M. et al. Principal component analysis and blind separation of sources for optical imaging of intrinsic signals. Neuroimage 11, 482–490 (2000).

    Article  CAS  PubMed  Google Scholar 

  23. Liégeois, R., Laumann, T. O., Snyder, A. Z., Zhou, J. & Yeo, B. T. T. Interpreting temporal fluctuations in resting-state functional connectivity MRI. Neuroimage 163, 437–455 (2017).

    Article  PubMed  Google Scholar 

  24. Andersen, A. H., Gash, D. M. & Avison, M. J. Principal component analysis of the dynamic response measured by fMRI: a generalized linear systems framework. Magn. Reson. Imaging 17, 795–815 (1999).

    Article  CAS  PubMed  Google Scholar 

  25. Vos de Wael, R. et al. BrainSpace: a toolbox for the analysis of macroscale gradients in neuroimaging and connectomics datasets. Commun. Biol. 3, 103 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  26. Calhoun, V. D., Adali, T., Pearlson, G. D. & Pekar, J. J. A method for making group inferences from functional MRI data using independent component analysis. Hum. Brain Mapp. 14, 140–151 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Alexander-Bloch, A. F. et al. On testing for spatial correspondence between maps of human brain structure and function. Neuroimage 178, 540–551 (2018).

    Article  PubMed  Google Scholar 

  28. Yousefi, B., Shin, J., Schumacher, E. H. & Keilholz, S. D. Quasi-periodic patterns of intrinsic brain activity in individuals and their relationship to global signal. Neuroimage 167, 297–308 (2018).

    Article  PubMed  Google Scholar 

  29. Fransson, P. Spontaneous low-frequency BOLD signal fluctuations: an fMRI investigation of the resting-state default mode of brain function hypothesis. Hum. Brain Mapp. 26, 15–29 (2005).

    Article  PubMed  PubMed Central  Google Scholar 

  30. Espadoto, M., Martins, R. M., Kerren, A., Hirata, N. S. T. & Telea, A. C. Toward a quantitative survey of dimension reduction techniques. IEEE Trans. Vis. Comput. Graph. 27, 2153–2173 (2021).

    Article  PubMed  Google Scholar 

  31. Esfahlani, F. Z. et al. High-amplitude cofluctuations in cortical activity drive functional connectivity. Proc. Natl Acad. Sci. USA 117, 28393–28401 (2020).

    Article  CAS  Google Scholar 

  32. Betzel, R. F., Cutts, S. A., Greenwell, S., Faskowitz, J. & Sporns, O. Individualized event structure drives individual differences in whole-brain functional connectivity. Neuroimage 252, 118993 (2022).

    Article  PubMed  Google Scholar 

  33. Lurie, D. J. et al. Questions and controversies in the study of time-varying functional connectivity in resting fMRI. Netw. Neurosci. 4, 30–69 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  34. Tong, Y., Hocke, L. M. & Frederick, B. B. Low frequency systemic hemodynamic ‘noise’ in resting state BOLD fMRI: characteristics, causes, implications, mitigation strategies, and applications. Front. Neurosci. 13, 787 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  35. Erdoğan, S. B., Tong, Y., Hocke, L. M., Lindsey, K. P. & deB Frederick, B. Correcting for blood arrival time in global mean regression enhances functional connectivity analysis of resting state fMRI-BOLD signals. Front. Hum. Neurosci. 10, 311 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  36. Tong, Y., Yao, J. F., Chen, J. J. & deB Frederick, B. The resting-state fMRI arterial signal predicts differential blood transit time through the brain. J. Cereb. Blood Flow. Metab. 39, 1148–1160 (2019).

    Article  PubMed  Google Scholar 

  37. Schölvinck, M. L., Maier, A., Ye, F. Q., Duyn, J. H. & Leopold, D. A. Neural basis of global resting-state fMRI activity. Proc. Natl Acad. Sci. USA 107, 10238–10243 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  38. Turchi, J. et al. The basal forebrain regulates global resting-state fMRI fluctuations. Neuron 97, 940–952 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Özbay, P. S. et al. Sympathetic activity contributes to the fMRI signal. Commun. Biol. 2, 421 (2019).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  40. Colenbier, N. et al. Disambiguating the role of blood flow and global signal with partial information decomposition. Neuroimage 213, 116699 (2020).

    Article  PubMed  Google Scholar 

  41. Raichle, M. E. et al. A default mode of brain function. Proc. Natl Acad. Sci. USA 98, 676–682 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Grooms, J. K. et al. Infraslow electroencephalographic and dynamic resting state network activity. Brain Connect. 7, 265–280 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  43. Thompson, G. J., Pan, W.-J., Magnuson, M. E., Jaeger, D. & Keilholz, S. D. Quasi-periodic patterns (QPP): large-scale dynamics in resting state fMRI that correlate with local infraslow electrical activity. Neuroimage 84, 1018–1031 (2014).

    Article  PubMed  Google Scholar 

  44. Liang, Y. et al. Cortex-wide dynamics of intrinsic electrical activities: propagating waves and their interactions. J. Neurosci. 41, 3665–3678 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Takeda, Y., Hiroe, N. & Yamashita, O. Whole-brain propagating patterns in human resting-state brain activities. Neuroimage 245, 118711 (2021).

    Article  PubMed  Google Scholar 

  46. Gonzalez-Castillo, J., Kam, J. W. Y., Hoy, C. W. & Bandettini, P. A. How to interpret resting-state fMRI: ask your participants. J. Neurosci. 41, 1130–1141 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Van Essen, D. C. et al. The WU-Minn Human Connectome Project: an overview. Neuroimage 80, 62–79 (2013).

    Article  PubMed  Google Scholar 

  48. Smith, S. M. et al. Resting-state fMRI in the Human Connectome Project. Neuroimage 80, 144–168 (2013).

    Article  PubMed  Google Scholar 

  49. Dale, A. M., Fischl, B. & Sereno, M. I. Cortical surface-based analysis. I. Segmentation and surface reconstruction. Neuroimage 9, 179–194 (1999).

    Article  CAS  PubMed  Google Scholar 

  50. Horel, J. D. Complex principal component analysis: theory and examples. J. Clim. Appl. Meteor. 23, 1660–1673 (1984).

    Article  Google Scholar 

  51. Reid, A. T. et al. Advancing functional connectivity research from association to causation. Nat. Neurosci. 22, 1751–1760 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Bzdok, D. et al. Formal models of the network co-occurrence underlying mental operations. PLoS Comput. Biol. 12, e1004994 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  53. Schaefer, A. et al. Local–global parcellation of the human cerebral cortex from intrinsic functional connectivity MRI. Cereb. Cortex 28, 3095–3114 (2018).

    Article  PubMed  Google Scholar 

  54. Mitra, A., Snyder, A. Z., Blazey, T. & Raichle, M. E. Lag threads organize the brain’s intrinsic activity. Proc. Natl Acad. Sci. USA 112, E2235–E2244 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by grants from the Canadian Institute for Advanced Research, a Gabelli Senior Scholar Award from the University of Miami, R01MH107549 from the National Institute of Mental Health (NIMH) (to L.Q.U.), an NIMH award (R03MH121668) and a National Alliance for Research on Schizophrenia & Depression Young Investigator Award (to J.S.N.). B.T.T.Y. was supported by the Singapore National Research Foundation Fellowship (Class of 2017), the NUS Yong Loo Lin School of Medicine (NUHSRO/2020/124/TMR/LOA), the Singapore National Medical Research Council Large Collaborative Grant (OFLCG19May-0035) and NMRC STaR (STaR20nov-0003). S.D.K was supported by RO1MH111416 and R01NS078095 from the National Institutes of Health (NIH).

Author information

Authors and Affiliations

Authors

Contributions

T.B. performed all analyses. S.D.K developed the original QPP algorithm used in this study. L.Q.U., S.D.K., B.T.T.Y., D.B., J.N. and C.C assisted in the interpretation of analyses, conceptualization of the project and writing of the manuscript. J.S. assisted in the development and testing of the publicly available GitHub repository that documents and stores analysis code.

Corresponding authors

Correspondence to Taylor Bolt or Shella D. Keilholz.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Neuroscience thanks Janine Bijsterbosch, Javier Gonzalez-Castillo and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Videos 1–3 captions, Supplementary Modeling Notes and Supplementary Figs. 1–13

Reporting Summary

Supplementary Video 1

Supplementary Movie 1. Visualization of three spatiotemporal patterns. Temporal reconstruction of all three spatiotemporal patterns displayed as movies in the following order: pattern one, pattern two and pattern three. The timepoints are equally spaced samples (n = 30) of the spatiotemporal patterns. The seconds since the beginning of the spatiotemporal pattern are displayed in the top left. In the bottom of the panel, the timepoints of the spatiotemporal pattern are displayed in three-dimensional PC space (Fig. 2). Two-dimensional slices of the three-PC space (Fig. 3) are displayed as the three two-dimensional plots. The progression of timepoints in the PC space is illustrated by a cyclical color map (light to dark to light). The movement of the spatiotemporal pattern through this space is illustrated by a moving red dot from timepoint to timepoint in synchronization with the temporal reconstruction in the movie.

Supplementary Video 2

Supplementary Movie 2. Dynamic visualization of the qpp, pattern one and global signal. The 30 timepoints (TR = 0.72 seconds) of the global QPP, pattern one and peak-average global signal displayed as a movie (in that order). The time index of each sequence is displayed in the top left. The timepoints of pattern one are equally spaced phase samples (n = 30) of the timepoint reconstruction (see above). The timepoints of the global QPP are derived from the spatiotemporal template computed from the repeated-template-averaging procedure on non-global signal regressed data. The global signal visualization concatenates the left and right windows (w = 15 TRs) of the global signal peak-average. The timepoints of the global signal visualization begin at TR = −15, corresponding to 15 TRs pre-peak, and proceed to TR = 15, corresponding to 15 TRs post-peak.

Supplementary Video 3

Supplementary Movie 3. Dynamic visualization of the anti-correlated QPP and pattern two. The 30 timepoints (TR = 0.72 seconds) of the anti-correlated QPP and pattern two. The time index of each sequence is displayed in the top left. The timepoints of pattern two are equally spaced phase samples (n = 30) of the timepoint reconstruction (Methods). The timepoints of the anti-correlated QPP are derived from the spatiotemporal template computed from the repeated-template-averaging procedure on global signal regressed data.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bolt, T., Nomi, J.S., Bzdok, D. et al. A parsimonious description of global functional brain organization in three spatiotemporal patterns. Nat Neurosci 25, 1093–1103 (2022). https://doi.org/10.1038/s41593-022-01118-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41593-022-01118-1

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing