Skip to main content

Advertisement

Log in

Effects of physical exercise on bone mineral density in older postmenopausal women: a systematic review and meta-analysis of randomized controlled trials

  • Review
  • Published:
Archives of Osteoporosis Aims and scope Submit manuscript

Abstract

Summary

Osteoporosis or decreased bone mineral density (BMD) is the most important risk factor for fractures, especially in older postmenopausal women (PMW). However, the interactions between exercise training and bone mineral density are not completely understood. We evaluated the effects of physical exercise on BMD in women aged ≥ 60 years postmenopausal.

Purpose

This systematic review and meta-analysis sets out to determine the effects of physical exercise on BMD in older postmenopausal women.

Methods

A systematic search was conducted in Medline, Science Direct, Cochrane, PubMed, CINAHL, Google Scholar, Scopus, and ProQuest up to December 25, 2021. Fifty-three studies, which assessed a total of 2896 participants (mean age: between 60 and 82 years), were included and analyzed using a random-effects model to estimate weighted mean differences (WMD) with 95% confidence intervals (CI).

Results

The meta-analysis found that exercise training significantly (p < 0.05) increased femoral neck (WMD: 0.01 g/cm2; 95% CI, 0.00 to 0.01], p = 0.0005; I2 = 57%; p < 0.0001), lumbar spine (WMD: 0.01 g/cm2, 95% CI, 0.01 to 0.02], I2 = 81%; p = 0.0001), and trochanter (WMD: 0.01 g/cm2, 95% CI 0.00, 0.02]; p = 0.009; I2 = 17%; p = 0.23). There were no significant differences between the intervention and control groups for total body and total hip BMD.

Conclusion

Our findings suggest that exercise training may improve bone mineral density in older PMW. This improvement is mediated by increases in the femoral neck, lumbar spine, and trochanter BMD. Further long-term studies are required to confirm these findings.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Adami S, Gatti D, Braga V, Bianchini D, Rossini M (1999) Site-specific effects of strength training on bone structure and geometry of ultradistal radius in postmenopausal women. JBMR 14:120–124

    Article  CAS  Google Scholar 

  2. Ahn N, Kim K (2016) Effects of 12-week exercise training on osteocalcin, high-sensitivity C-reactive protein concentrations, and insulin resistance in elderly females with osteoporosis. Phys Ther Sci 28:2227–2231

    Article  Google Scholar 

  3. Ammann P, Rizzoli R (2003) Bone strength and its determinants. Osteoporos Int 14:13–18

    Article  Google Scholar 

  4. Armamento-Villareal R, Aguirre L, Waters DL, Napoli N, Qualls C, Villareal DT (2020) Effect of aerobic or resistance exercise, or both, on bone mineral density and bone metabolism in obese older adults while dieting: a randomized controlled trial. JBMR 35:430–439

    Article  CAS  Google Scholar 

  5. Battafarano G, Rossi M, Marampon F, Minisola S, Del Fattore A (2020) Bone control of muscle function. Int J Mol Sci 21:1178

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Beck BR, Norling TL (2010) The effect of 8 months of twice-weekly low-or higher intensity whole body vibration on risk factors for postmenopausal hip fracture. Am J Phys Med Rehabil 89:997–1009

    Article  PubMed  Google Scholar 

  7. Bello M, Sousa MC, Neto G, Oliveira L, Guerras I, Mendes R, Sousa N (2014) The effect of a long-term, community-based exercise program on bone mineral density in postmenopausal women with pre-diabetes and type 2 diabetes. J Hum Kinet 43:43–48

    Article  PubMed  PubMed Central  Google Scholar 

  8. Bemben DA, Palmer IJ, Bemben MG, Knehans AW (2010) Effects of combined whole-body vibration and resistance training on muscular strength and bone metabolism in postmenopausal women. Bone 47:650–656

    Article  PubMed  Google Scholar 

  9. Cariati I, Bonanni R, Onorato F, Mastrogregori A, Rossi D, Iundusi R et al (2021) Role of physical activity in bone–muscle crosstalk: biological aspects and clinical implications. J Funct Morphol Kinesiol 6:55–60

    Article  PubMed  PubMed Central  Google Scholar 

  10. Chatterjee S, Roy S, Majumder S, RoyChowdhury A (2020) Biomechanical analysis to probe role of bone condition and subject weight in stiffness customization of femoral stem for improved periprosthetic biomechanical response. J Biomech Eng 142:101002

    Article  PubMed  Google Scholar 

  11. Chien MY, Wu Y, Hsu AT, Yang R, Lai J (2000) Efficacy of a 24-week aerobic exercise program for osteopenic postmenopausal women. Calcif Tissue Int 67:443–448

    Article  CAS  PubMed  Google Scholar 

  12. Chow R, Harrison JE, Notarius C (1987) Effect of two randomised exercise programmes on bone mass of healthy postmenopausal women. BMJ 295:1441–1444

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Christenson E, Jiang X, Kagan R, Schnatz P (2012) Osteoporosis management in post-menopausal women. Minerva Ginecol 64:181–194

    CAS  PubMed  Google Scholar 

  14. Chuin A, Labonté M, Tessier D, Khalil A, Bobeuf F, Doyon C et al (2009) Effect of antioxidants combined to resistance training on BMD in elderly women: a pilot study. Osteoporosis Int 20:1253–1258

    Article  CAS  Google Scholar 

  15. Brooke-Wavell K, Jones PR, Hardman AE (1997) Brisk walking reduces calcaneal bone loss in post-menopausal women. Clin Sci 92:75–80

    Article  CAS  Google Scholar 

  16. Dalsky GP, Stocke KS, Ehsani AA, Slatopolsky E, Lee WC, Birge JR (1988) Weight-bearing exercise training and lumbar bone mineral content in postmenopausal women. Ann Intern Med 108:824–828

    Article  CAS  PubMed  Google Scholar 

  17. Duff WR, Kontulainen SA, Candow DG, Gordon JJ, Mason RS, Taylor-Gjevre R et al (2016) Effects of low-dose ibuprofen supplementation and resistance training on bone and muscle in postmenopausal women: a randomized controlled trial. Bone Rep 5:96–103

    Article  PubMed  PubMed Central  Google Scholar 

  18. Egger M, Smith GD, Schneider M, Minder C (1997) Bias in meta-analysis detected by a simple, graphical test. BMJ 315:629–634

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Englund U, Littbrand H, Sondell A, Pettersson U, Bucht G (2005) A 1-year combined weight-bearing training program is beneficial for bone mineral density and neuromuscular function in older women. Osteoporosis Int 16:1117–1123

    Article  Google Scholar 

  20. Fratini A, Bonci T, Bull AM (2016) Whole body vibration treatments in postmenopausal women can improve bone mineral density: results of a stimulus focused meta-analysis. PLoS ONE 11:e0166774

    Article  PubMed  PubMed Central  Google Scholar 

  21. Fronza F, Moreira-Pfrimer LDF, Dos Santos RN, Teixeira LR, Silva DA, Petroski ÉL (2013) Effects of high-intensity aquatic exercises on bone mineral density in postmenopausal women with and without vertebral fractures. Am J Sport Sci 1:1–8

    Article  Google Scholar 

  22. Frost HM (2003) Bone’s mechanostat: a 2003 update. Anat Rec A Discov Mol Cell Evol Biol 275:1081–1101

    Article  PubMed  Google Scholar 

  23. Gomez-Bruton A, Montero-Marin J, González-Agüero A, Garcia-Campayo J, Moreno LA, Casajus JA, Vicente-Rodriguez G (2016) The effect of swimming during childhood and adolescence on bone mineral density: a systematic review and meta-analysis. Sports Med 46:365–379

    Article  PubMed  Google Scholar 

  24. Goodman CA (2013) The role of mTORC1 in regulating protein synthesis and skeletal muscle mass in response to various mechanical stimuli. Rev Physiol Biochem Pharmacol 166:43–95

    Article  Google Scholar 

  25. Goodman CA, Hornberger TA, Robling AG (2015) Bone and skeletal muscle: key players in mechanotransduction and potential overlapping mechanisms. Bone 80:24–36

    Article  PubMed  PubMed Central  Google Scholar 

  26. Goodman CA, Miu MH, Frey JW, Mabrey DM, Lincoln HC, Ge Y et al (2010) A phosphatidylinositol 3-kinase/protein kinase B-independent activation of mammalian target of rapamycin signaling is sufficient to induce skeletal muscle hypertrophy. Mol Biol Cell 21:3258–3268

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Hamaguchi K, Kurihara T, Fujimoto M, Iemitsu M, Sato K, Hamaoka T, Sanada K (2016) The effects of low-repetition and light-load power training on bone mineral density in postmenopausal women with sarcopenia: a pilot study. BMC Geriatr 17:1–7

    Google Scholar 

  28. Hans D, Genton L, Drezner M, Schott A, Pacifici R, Avioli L et al (2002) Monitored impact loading of the hip: initial testing of a home-use device. Calcif Tissue Int 71:112–120

    Article  CAS  PubMed  Google Scholar 

  29. Hartard M, Haber P, Ilieva D, Preisinger E, Seidl G, Huber J (1996) Systematic strength training as a model of therapeutic intervention: a controlled trial in postmenopausal women with osteopenia1. Am J Phys Med Rehabil 75:21–28

    Article  CAS  PubMed  Google Scholar 

  30. Hartley C, Folland JP, Kerslake R, Brooke-Wavell K (2020) High-impact exercise increased femoral neck bone density with no adverse effects on imaging markers of knee osteoarthritis in postmenopausal women. JBMR 35:53–63

    Article  CAS  Google Scholar 

  31. Higgins JP, Thompson SG, Deeks JJ, Altman DG (2003) Measuring inconsistency in meta-analyses. BMJ 327:557–560

    Article  PubMed  PubMed Central  Google Scholar 

  32. Iolascon G, De Sire A, Curci C, Paoletta M, Liguori S, Calafiore D et al (2021) Osteoporosis guidelines from a rehabilitation perspective: systematic analysis and quality appraisal using AGREE II. Eur J Phys Rehabil Med 57:273–279

    Article  PubMed  Google Scholar 

  33. Iolascon G, Gimigliano F, Di Pietro G, Moretti A, Paoletta M, Rivezzi M et al (2021) Personalized paths for physical activity: developing a person-centered quantitative function to determine a customized amount of exercise and enhancing individual commitment. BMC Sports Sci Med Rehabil 13:1–15

    Article  Google Scholar 

  34. Iwamoto J, Takeda T, Ichimura S (2001) Effect of exercise training and detraining on bone mineral density in postmenopausal women with osteoporosis. J Orthop Sci 6:128–132

    Article  CAS  PubMed  Google Scholar 

  35. Iwamoto J, Takeda T, Otani T, Yabe Y (1998) Effect of increased physical activity on bone mineral density in postmenopausal osteoporotic women. Keio J Med 47:157–161

    Article  CAS  PubMed  Google Scholar 

  36. James MS, Carroll S (2006) High-intensity resistance training and postmenopausal bone loss: a meta-analysis. Osteoporosis Int 17:1225–1240

    Article  Google Scholar 

  37. James MS, Carroll S (2010) Effects of different impact exercise modalities on bone mineral density in premenopausal women: a meta-analysis. J Bone Miner Metab 28:251–267

    Article  Google Scholar 

  38. Bloomfield SA, Williams NI, Lamb DR, Jackson RD (1993) Non-weightbearing exercise may increase lumbar spine bone mineral density in healthy postmenopausal women. Am J Phys Med Rehabil 72:204–209

    Article  CAS  PubMed  Google Scholar 

  39. Bocalini DS, Serra AJ, Dos Santos L (2010) Moderate resistive training maintains bone mineral density and improves functional fitness in postmenopausal women. J Aging Res 2010:760818

    Article  PubMed  PubMed Central  Google Scholar 

  40. Bocalini DS, Serra AJ, Dos Santos L, Murad N, Levy RF (2009) Strength training preserves the bone mineral density of postmenopausal women without hormone replacement therapy. JAH 21:519–527

    PubMed  Google Scholar 

  41. Brentano MA, Cadore EL, Da Silva EM, Ambrosini AB, Coertjens M, Petkowicz R et al (2008) Physiological adaptations to strength and circuit training in postmenopausal women with bone loss. J Strength Cond Res 22:1816–1825

    Article  PubMed  Google Scholar 

  42. Brooke-Wavell K, Jones P, Hardman A, Tsuritani I, Yamada Y (2001) Commencing, continuing and stopping brisk walking: effects on bone mineral density, quantitative ultrasound of bone and markers of bone metabolism in postmenopausal women. Osteoporosis Int 12:581–587

    Article  CAS  Google Scholar 

  43. Burr DB (1997) Muscle strength, bone mass, and age-related bone loss. JBMR 12:1547–1551

    Article  CAS  Google Scholar 

  44. Caplan GA, Ward JA, Lord SR (1993) The benefits of exercise in postmenopausal women. Aust J Public Health 17:23–26

    Article  CAS  PubMed  Google Scholar 

  45. Jessup JV, Horne C, Vishen R, Wheeler D (2003) Effects of exercise on bone density, balance, and self-efficacy in older women. Biol Res Nurs 4:171–180

    Article  PubMed  Google Scholar 

  46. Junior AM, Teixeira CVLS, Dos Santos RN, Machado AF, Evangelista AL, Rica RL et al (2018) A high-intensity jump-based aquatic exercise program improves bone mineral density and functional fitness in postmenopausal women. Rejuvenation Res 21:535–540

    Article  Google Scholar 

  47. Kaji H (2014) Interaction between muscle and bone. J Bone Metab 21:29–40

    Article  PubMed  PubMed Central  Google Scholar 

  48. Karasik D, Kiel DP (2010) Evidence for pleiotropic factors in genetics of the musculoskeletal system. Bone 46:1226–1237

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Karinkanta S, Heinonen A, Sievänen H, Uusi-Rasi K, Pasanen M, Ojala K et al (2007) A multi-component exercise regimen to prevent functional decline and bone fragility in home-dwelling elderly women: randomized, controlled trial. Osteoporosis Int 18:453–462

    Article  CAS  Google Scholar 

  50. Kelley G (1998) Aerobic exercise and lumbar spine bone mineral density in postmenopausal women: a meta-analysis. JAGS 46:143–152

    Article  CAS  Google Scholar 

  51. Kelley GA (1998) Aerobic exercise and bone density at the hip in postmenopausal women: a meta-analysis. Prev Med 27:798–807

    Article  CAS  PubMed  Google Scholar 

  52. Kelley GA, Kelley KS, Kohrt WM (2012) Effects of ground and joint reaction force exercise on lumbar spine and femoral neck bone mineral density in postmenopausal women: a meta-analysis of randomized controlled trials. BMC Musculoskeletal Disord 13:1–19

    Article  Google Scholar 

  53. Kelley GA, Kelley KS, Tran ZV (2001) Resistance training and bone mineral density in women: a meta-analysis of controlled trials. Am J Phys Med Rehabil 80:65–77

    Article  CAS  PubMed  Google Scholar 

  54. Kemmler W, Shojaa M, Kohl M, Von Stengel S (2020) Effects of different types of exercise on bone mineral density in postmenopausal women: a systematic review and meta-analysis. Calcif Tissue Int 107:409–439

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Kemmler W, Von Stengel S, Engelke K, Häberle L, Kalender WA (2010) Exercise effects on bone mineral density, falls, coronary risk factors, and health care costs in older women: the randomized controlled senior fitness and prevention (SEFIP) study. Arch Intern Med 170:179–185

    Article  PubMed  Google Scholar 

  56. Kerr D, Ackland T, Maslen B, Morton A, Prince R (2001) Resistance training over 2 years increases bone mass in calcium-replete postmenopausal women. JBMR 16:175–181

    Article  CAS  Google Scholar 

  57. Kirk B, Feehan J, Lombardi G, Duque G (2020) Muscle, bone, and fat crosstalk: the biological role of myokines, osteokines, and adipokines. Curr Osteoporos Rep 18:388–400

    Article  PubMed  Google Scholar 

  58. Kohrt WM, Snead DB, Slatopolsky E, Birge SJ (1995) Additive effects of weight-bearing exercise and estrogen on bone mineral density in older women. JBMR 10:1303–1311

    Article  CAS  Google Scholar 

  59. Kolbe-Alexander TL, Charlton K, Lambert E (2004) Lifetime physical activity and determinants of estimated bone mineral density using calcaneal ultrasound in older South African adults. J Nutr Health Aging 8:521–530

    CAS  PubMed  Google Scholar 

  60. Korpelainen R, Keinänen-Kiukaanniemi S, Heikkinen J, Väänänen K, Korpelainen J (2006) Effect of impact exercise on bone mineral density in elderly women with low BMD: a population-based randomized controlled 30-month intervention. Osteoporosis int 17:109–118

    Article  Google Scholar 

  61. Ksiezopolska-Orłowska K (2010) Changes in bone mechanical strength in response to physical therapy. Pol Arch Intern Med 120:368–373

    Article  Google Scholar 

  62. Kwon Y, Park S, Kim E, Park J (2008) The effects of multi-component exercise training on VO2max, muscle mass, whole bone mineral density and fall risk in community-dwelling elderly women. Jpn J Phys Fit Sports Med 57:339–348

    Google Scholar 

  63. Lai CL, Tseng SY, Chen CN, Liao WC, Wang CH, Lee MC et al (2013) Effect of 6 months of whole body vibration on lumbar spine bone density in postmenopausal women: a randomized controlled trial. Clin Interv Aging 8:1603

    PubMed  PubMed Central  Google Scholar 

  64. Laplante M, Sabatini DM (2012) mTOR signaling in growth control and disease. Cell 149:274–293

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Lara-Castillo N, Johnson ML (2020) Bone-muscle mutual interactions. Curr Osteoporos Rep 18:408–421

    Article  PubMed  PubMed Central  Google Scholar 

  66. Lau E, Woo J, Leung P, Swaminathan R, Leung D (1992) The effects of calcium supplementation and exercise on bone density in elderly Chinese women. Osteoporosis Int 2:168–173

    Article  CAS  Google Scholar 

  67. Leung K, Li C, Tse Y, Choy T, Leung P, Hung V et al (2014) Effects of 18-month low-magnitude high-frequency vibration on fall rate and fracture risks in 710 community elderly—a cluster-randomized controlled trial. Osteoporosis Int 25:1785–1795

    Article  CAS  Google Scholar 

  68. Lin CF, Huang TH, Tu KC, Lin LL, Tu YH, Yang RS (2012) Acute effects of plyometric jumping and intermittent running on serum bone markers in young males. Eur J Appl Physiol 112:1475–1484

    Article  PubMed  Google Scholar 

  69. Lin LL, Hsieh SS (2005) Effects of strength and endurance exercise on calcium-regulating hormones between different levels of physical activity. J Mech Med Biol 5:267–275

    Article  Google Scholar 

  70. Liu BX, Chen SP, Li YD, Wang J, Zhang B, Lin Y et al (2015) The effect of the modified eighth section of eight-section brocade on osteoporosis in postmenopausal women: a prospective randomized trial. Med 94:e991

    Article  CAS  Google Scholar 

  71. Lord SR, Ward J, Zivanovic E (1996) The effects of a community exercise program on fracture risk factors in older women. Osteoporosis Int 6:361–367

    Article  CAS  Google Scholar 

  72. Lynch NA, Ryan AS, Evans J, Katzel LI, Goldberg AP (2007) Older elite football players have reduced cardiac and osteoporosis risk factors. MSSE 39:1124–1130

    Google Scholar 

  73. Marín-Cascales E, Alcaraz PE, Ramos-Campo DJ, Martinez-Rodriguez A, Chung LH, Rubio-Arias JÁ (2018) Whole-body vibration training and bone health in postmenopausal women: a systematic review and meta-analysis. Med 97:e11918

    Article  Google Scholar 

  74. Marques EA, Mota J, Carvalho J (2012) Exercise effects on bone mineral density in older adults: a meta-analysis of randomized controlled trials. Age 34:1493–1515

    Article  PubMed  Google Scholar 

  75. Marques EA, Mota J, Machado L, Sousa F, Coelho M, Moreira P, Carvalho J (2011) Multicomponent training program with weight-bearing exercises elicits favorable bone density, muscle strength, and balance adaptations in older women. Calcif Tissue Int 88:117–129

    Article  CAS  PubMed  Google Scholar 

  76. Marques EA, Wanderley F, Machado L, Sousa F, Viana JL, Moreira-Gonçalves D et al (2011) Effects of resistance and aerobic exercise on physical function, bone mineral density, OPG and RANKL in older women. Exp Gerontol 46:524–532

    Article  CAS  PubMed  Google Scholar 

  77. Marty E, Liu Y, Samuel A, Or O, Lane J (2017) A review of sarcopenia: enhancing awareness of an increasingly prevalent disease. Bone 105:276–286

    Article  PubMed  Google Scholar 

  78. Martyn-St James M, Carroll S (2009) A meta-analysis of impact exercise on postmenopausal bone loss: the case for mixed loading exercise programmes. BJSM 43:898–908

    Article  CAS  PubMed  Google Scholar 

  79. McCarthy I (2006) The physiology of bone blood flow: a review. JBJS 88:4–9

    Google Scholar 

  80. Mohammad Rahimi GR, Smart NA, Liang MT, Bijeh N, Albanaqi AL, Fathi M et al (2020) The impact of different modes of exercise training on bone mineral density in older postmenopausal women: a systematic review and meta-analysis research. Calcif Tissue Int 106:577–590

    Article  CAS  PubMed  Google Scholar 

  81. Monemi Amiri A, Hosseini SR, Rahmaninia F, Nooreddini H, Bijani A (2015) Relationship between bone mineral density and physical activity level in the elderly. Ann Appl Sport Sci 3:23–32

    Article  Google Scholar 

  82. Moreira LDF, Fronza FCA, Dos Santos RN, Zach PL, Kunii IS, Hayashi LF et al (2014) The benefits of a high-intensity aquatic exercise program (HydrOS) for bone metabolism and bone mass of postmenopausal women. J Bone Miner Metab 32:411–419

    CAS  PubMed  Google Scholar 

  83. Mosti MP, Kaehler N, Stunes AK, Hoff J, Syversen U (2013) Maximal strength training in postmenopausal women with osteoporosis or osteopenia. J Strength Cond Res 27:2879–2886

    Article  PubMed  Google Scholar 

  84. Nichols JF, Nelson KP, Peterson KK, Sartoris DJ (1995) Bone mineral density responses to high-intensity strength training in active older women. J Aging Phys Act 3:26–38

    Article  Google Scholar 

  85. Nicholson VP, McKean MR, Slater GJ, Kerr A, Burkett BJ (2015) Low-load very high-repetition resistance training attenuates bone loss at the lumbar spine in active post-menopausal women. Calcif Tissue Int 96:490–499

    Article  CAS  PubMed  Google Scholar 

  86. Nilsson M, Ohlsson C, Eriksson A, Frändin K, Karlsson M, Ljunggren Ö et al (2008) Competitive physical activity early in life is associated with bone mineral density in elderly Swedish men. Osteoporosis Int 19:1557–1566

    Article  CAS  Google Scholar 

  87. Oliveira L, Oliveira R, Pires-Oliveira D (2016) Effects of whole body vibration on bone mineral density in postmenopausal women: a systematic review and meta-analysis. Osteoporosis Int 27:2913–2933

    Article  CAS  Google Scholar 

  88. Page MJ, McKenzie JE, Bossuyt PM, Boutron I, Hoffmann TC, Mulrow CD et al (2021) The PRISMA 2020 statement: an updated guideline for reporting systematic reviews. Syst Rev 10:89–92

    Article  PubMed  PubMed Central  Google Scholar 

  89. Park H, Kim KJ, Komatsu T, Park SK, Mutoh Y (2008) Effect of combined exercise training on bone, body balance, and gait ability: a randomized controlled study in community-dwelling elderly women. J Bone Miner Metab 26:254–259

    Article  PubMed  Google Scholar 

  90. Pichler K, Loreto C, Leonardi R, Reuber T, Weinberg AM, Musumeci G (2013) RANKL is downregulated in bone cells by physical activity (treadmill and vibration stimulation training) in rat with glucocorticoid-induced osteoporosis. Histol Histopathol 28:1185–1196

    CAS  PubMed  Google Scholar 

  91. Pruitt LA, Taaffe DR, Marcus R (1995) Effects of a one-year high-intensity versus low-intensity resistance training program on bone mineral density in older women. JBMR 10:1788–1795

    Article  CAS  Google Scholar 

  92. Qin J, Rong X, Zhu G, Jiang Y (2018) The effects of square dancing on bone mineral density and bone turnover markers in patients with postmenopausal osteoporosis. J Mech Med Biol 18:1840027

    Article  Google Scholar 

  93. Rachner TD, Khosla S, Hofbauer LC (2011) Osteoporosis: now and the future. Lancet 377:1276–1287

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Renno ACM, Gomes ARS, Nascimento RB, Salvini T, Parizoto N (2007) Effects of a progressive loading exercise program on the bone and skeletal muscle properties of female osteopenic rats. Exp Gerontol 42:517–522

    Article  PubMed  Google Scholar 

  95. Rhodes E, Martin A, Taunton J, Donnelly M, Warren J, Elliot J (2000) Effects of one year of resistance training on the relation between muscular strength and bone density in elderly women. BJSM 34:18–22

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Rosa N, Simoes R, Magalhães FD, Marques AT (2015) From mechanical stimulus to bone formation: a review. Med Eng Phys 37:719–728

    Article  PubMed  Google Scholar 

  97. Ryan A, Treuth M, Hunter G, Elahi D (1998) Resistive training maintains bone mineral density in postmenopausal women. Calcif Tissue Int 62:295–299

    Article  CAS  PubMed  Google Scholar 

  98. Ryan AS, Nicklas BJ, Dennis KE (1998) Aerobic exercise maintains regional bone mineral density during weight loss in postmenopausal women. J Appl Physiol 84:1305–1310

    Article  CAS  PubMed  Google Scholar 

  99. Sakai A, Oshige T, Zenke Y, Yamanaka Y, Nagaishi H, Nakamura T (2010) Unipedal standing exercise and hip bone mineral density in postmenopausal women: a randomized controlled trial. J Bone Miner Metab 28:42–48

    Article  PubMed  Google Scholar 

  100. Santin-Medeiros F, Santos-Lozano A, Rey-López JP, Garatachea N (2015) Effects of eight months of whole body vibration training on hip bone mass in older women. Nutr Hosp 31:1654–1659

    PubMed  Google Scholar 

  101. Sapir-Koren R, Livshits G (2014) Osteocyte control of bone remodeling: is sclerostin a key molecular coordinator of the balanced bone resorption–formation cycles? Osteoporosis Int 25:2685–2700

    Article  CAS  Google Scholar 

  102. Shojaa M, Von Stengel S, Schoene D, Kohl M, Barone G, Bragonzoni L et al (2020) Effect of exercise training on bone mineral density in post-menopausal women: a systematic review and meta-analysis of intervention studies. Front Physiol 11:652–660

    Article  PubMed  PubMed Central  Google Scholar 

  103. Slatkovska L, Alibhai SM, Beyene J, Hu H, Demaras A, Cheung AM (2011) Effect of 12 months of whole-body vibration therapy on bone density and structure in postmenopausal women: a randomized trial. Ann Intern Med 155:668–679

    Article  PubMed  Google Scholar 

  104. Smart NA, Waldron M, Ismail H, Giallauria F, Vigorito C, Cornelissen V et al (2015) Validation of a new tool for the assessment of study quality and reporting in exercise training studies: TESTEX. Int J Evid Based Healthc 13:9–18

    Article  PubMed  Google Scholar 

  105. Snow CM, Shaw JM, Winters KM, Witzke KA (2000) Long-term exercise using weighted vests prevents hip bone loss in postmenopausal women. J Gerontol A Biol Sci Med Sci 55:M489–M491

    Article  CAS  PubMed  Google Scholar 

  106. Sprague BL, Trentham-Dietz A, Remington PL (2011) The contribution of postmenopausal hormone use cessation to the declining incidence of breast cancer. Cancer Causes Control 22:125–134

    Article  PubMed  Google Scholar 

  107. Tagliaferri C, Wittrant Y, Davicco MJ, Walrand S, Coxam V (2015) Muscle and bone, two interconnected tissues. Ageing Res Rev 21:55–70

    Article  CAS  PubMed  Google Scholar 

  108. Tantiwiboonchai N, Kritpet T, Yuktanandana P (2017) Effects of Muay Thai aerobic dance on biochemical bone markers and physical fitness in elderly women. J Exerc Physiol Online 20:1–10

    Google Scholar 

  109. Tartibian B, Hajizadeh Maleki B, Kanaley J, Sadeghi K (2011) Long-term aerobic exercise and omega-3 supplementation modulate osteoporosis through inflammatory mechanisms in post-menopausal women: a randomized, repeated measures study. Nutr Metab 8:1–13

    Article  Google Scholar 

  110. Tobeiha M, Moghadasian MH, Amin N, Jafarnejad S (2020) RANKL/RANK/OPG pathway: a mechanism involved in exercise-induced bone remodeling. Biomed Res Int 2020:6910312

    Article  PubMed  PubMed Central  Google Scholar 

  111. Tolomio S, Ermolao A, Lalli A, Zaccaria M (2010) The effect of a multicomponent dual-modality exercise program targeting osteoporosis on bone health status and physical function capacity of postmenopausal women. J Women Aging 22:241–254

    Article  PubMed  Google Scholar 

  112. Tong X, Chen X, Zhang S, Huang M, Shen X, Xu J, Zou J (2019) The effect of exercise on the prevention of osteoporosis and bone angiogenesis. Biomed Res Int 2019:8171897

    Article  PubMed  PubMed Central  Google Scholar 

  113. Turner CH, Pavalko FM (1998) Mechanotransduction and functional response of the skeleton to physical stress: the mechanisms and mechanics of bone adaptation. J Orthop Sci 3:346–355

    Article  CAS  PubMed  Google Scholar 

  114. Verschueren SM, Roelants M, Delecluse C, Swinnen S, Vanderschueren D, Boonen S (2004) Effect of 6-month whole body vibration training on hip density, muscle strength, and postural control in postmenopausal women: a randomized controlled pilot study. JBMR 19:352–359

    Article  Google Scholar 

  115. Vlachopoulos D, Barker AR, Ubago-Guisado E, Ortega FB, Krustrup P, Metcalf B et al (2018) The effect of 12-month participation in osteogenic and non-osteogenic sports on bone development in adolescent male athletes. The PRO-BONE study. J Sci Med Sport 21:404–409

    Article  PubMed  Google Scholar 

  116. Vlachopoulos D, Barker AR, Williams CA, Arngrímsson SA, Knapp KM, Metcalf BS et al (2017) The impact of sport participation on bone mass and geometry in male adolescents. MSSE 49:317–326

    Google Scholar 

  117. Von Stengel S, Kemmler W, Bebenek M, Engelke K, Kalender WA (2010) Effects of whole-body vibration training on different devices on bone mineral density. MSSE 43:1071–1079

    Google Scholar 

  118. Wang Q, Nicholson PH, Suuriniemi M, Lyytikäinen A, Helkala E, Alen M et al (2004) Relationship of sex hormones to bone geometric properties and mineral density in early pubertal girls. J Clin Endocrinol Metab 89:1698–1703

    Article  CAS  PubMed  Google Scholar 

  119. Wen H, Huang T, Li T, Chong P, Ang B (2017) Effects of short-term step aerobics exercise on bone metabolism and functional fitness in postmenopausal women with low bone mass. Osteoporosis Int 28:539–547

    Article  CAS  Google Scholar 

  120. Woo J, Hong A, Lau E, Lynn H (2007) A randomised controlled trial of Tai Chi and resistance exercise on bone health, muscle strength and balance in community-living elderly people. Age ageing 36:262–268

    Article  PubMed  Google Scholar 

  121. Xiang-Yan R, Feng-Yu J, Yu-Lan L, Zhou-Li P, Yun-Gao S (2008) Effects of vibration therapy on bone mineral density in postmenopausal women with osteoporosis. Chin. Med. J 1155–1158.

  122. Yamazaki S, Ichimura S, Iwamoto J, Takeda T, Toyama Y (2004) Effect of walking exercise on bone metabolism in postmenopausal women with osteopenia/osteoporosis. J Bone Miner Metab 22:500–508

    Article  CAS  PubMed  Google Scholar 

  123. Ye H (2018) Mechanic stress generated by a time-varying electromagnetic field on bone surface. Med Biol Eng Comput 56:1793–1805

    Article  PubMed  Google Scholar 

  124. Yu PA, Hsu WH, Hsu WB, Kuo LT, Lin ZR, Shen WJ et al (2019) The effects of high impact exercise intervention on bone mineral density, physical fitness, and quality of life in postmenopausal women with osteopenia: A retrospective cohort study. Med 98:8–12

    Google Scholar 

  125. Zehnacker CH, Bemis-Dougherty A (2007) Effect of weighted exercises on bone mineral density in post-menopausal women a systematic review. JGPT 30:79–88

    Google Scholar 

  126. Zhao R, Zhang M, Zhang Q (2017) The effectiveness of combined exercise interventions for preventing postmenopausal bone loss: a systematic review and meta-analysis. J Orthop Sports Phys Ther 47:241–251

    Article  PubMed  Google Scholar 

  127. Zhao R, Zhao M, Xu Z (2015) The effects of differing resistance training modes on the preservation of bone mineral density in postmenopausal women: a meta-analysis. Osteoporosis Int 26:1605–1618

    Article  CAS  Google Scholar 

  128. Zhao R, Zhao M, Zhang L (2014) Efficiency of jumping exercise in improving bone mineral density among premenopausal women: a meta-analysis. Sports Med 44:1393–1402

    Article  PubMed  Google Scholar 

  129. Barzanjeh SP, Nouie F, Mirzaei S (2017) Effect of 12 months of strength training in water on bone mineral density of the lumbar spine and femoral neck in postmenopausal women with osteoporosis. Sci J Kurd Univ Med Sci 21:1–10

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Keyvan Hejazi.

Ethics declarations

Conflicts of interest

None.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 323 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hejazi, K., Askari, R. & Hofmeister, M. Effects of physical exercise on bone mineral density in older postmenopausal women: a systematic review and meta-analysis of randomized controlled trials. Arch Osteoporos 17, 102 (2022). https://doi.org/10.1007/s11657-022-01140-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11657-022-01140-7

Keywords

Navigation