Skip to main content
Log in

Effect of Nano-Particles on Natural Convection in Corrugated-Wall Enclosure

  • Published:
Journal of Engineering Thermophysics Aims and scope

Abstract

The heat transfer and fluid flow in a corrugated square cavity filled with nanofluid are investigated numerically. The opposite vertical walls are taken as having different temperatures, while the horizontal walls are considered as adiabatic. The nanofluid is copper-water, and three different shapes of corrugated boundaries are investigated here: wavy, triangular, and rectangular. The governing equations are solved with application of the SIMPLE algorithm, based on the control volume approach. This study investigates the effect of several parameters on the heat transfer: the boundary shape, Rayleigh number, nano-particle volume fraction, nano-particle diameter, cycle number, and triangle wave amplitude. The results show that corrugated boundaries reduce the heat transfer. In addition, it is found out that a nanofluid with \(\phi\) of about 0.02 has the highest value of heat transfer enhancement.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

REFERENCES

  1. Wang, B.X., Du, J.H., and Peng, X.F., Internal Natural, Forced and Mixed Convection in Fluid-Saturated Porous Medium, Transport Phen. Porous Media, 1998, pp. 357–382.

  2. Kurtulmus, N. and Sahin, B., A Review of Hydrodynamics and Heat Transfer through Corrugated Channels, Int. Comm. Heat Mass Transfer, 2019, p. 108104307.

    Article  Google Scholar 

  3. Khanafer, K., Vafai, K., and Lightstone, M., Buoyancy Driven Heat Transfer Enhancement in a Two-Dimensional Enclosure Utilizing Nano-Fluids, Int. J. Heat Mass Transfer, 2003, vol. 46, pp. 3639–3653.

    Article  Google Scholar 

  4. Triveni, M.K. and Panua, R., Numerical Analysis of Natural Convection in a Triangular Cavity with Different Configurations of Hot Wall, Int. J. Heat Technol., 2017, vol. 35, pp. 11–18.

    Article  Google Scholar 

  5. Santra, A.K., Sen, S., and Chakraborty, N., Study of Heat Transfer Augmentation in a Differentially Heated Square Cavity Using Copper–Water Nanofluid, Int. J. Thermal Sci., 2008, vol. 47, pp. 1113–1122.

    Article  Google Scholar 

  6. Corcione, M., Heat Transfer Features of Buoyancy-Driven Nanofluids inside Rectangular Enclosures Differentially Heated at the Sidewalls, Int. J. Thermal Sci., 2010, vol. 49, pp. 1536–1546.

    Article  Google Scholar 

  7. Izadi, M., Sheremet, M.A., and Mehryan, S.A.M., Natural Convection of a Hybrid Nanofluid Affected by an Inclined Periodic Magnetic Field within a Porous Medium, Chinese J. Phys., 2020, vol. 65, pp. 447–458.

    Article  MathSciNet  ADS  Google Scholar 

  8. Geridonmez, B.P. and Oztop, H.F., Natural Convection in a Cavity Filled with Porous Medium under the Effect of a Partial Magnetic Field, Int. J. Mech. Sci., 2019, vol. 161, p. 105077.

    Article  Google Scholar 

  9. Afrand, M., Pordanjani, A.H., Aghakhani, S., Oztop, H.F., and Abu-Hamdeh, N., Free Convection and Entropy Generation of a Nanofluid in a Tilted Triangular Cavity Exposed to a Magnetic Field with Sinusoidal Wall Temperature Distribution Considering Radiation Effects, Int. Commu. Heat Mass Transfer, 2020, vol. 112, p. 104507.

    Article  Google Scholar 

  10. Heidary, H. and Kermani, M.J., Effect of Nano-Particles on Forced Convection in Sinusoidal-Wall Channel, Int. Commun. Heat Mass Transfer, 2010, vol. 37, pp. 1520–1527.

    Article  Google Scholar 

  11. Heidary, H. and Kermani, M.J., Heat Transfer Enhancement in a Channel with Block(s) Effect and Utilizing Nano-Fluid, Int. J. Thermal Sci., 2012, vol. 57, pp. 163–171.

    Article  Google Scholar 

  12. Ahmed, M.A., Yusoff, M.Z., and Shuaib, N.H., Effects of Geometrical Parameters on the Flow and Heat Transfer Characteristics in Trapezoidal-Corrugated Channel using Nanofluid, Int. Commun. Heat Mass Transfer, 2013, vol. 42, pp. 69–74.

    Article  Google Scholar 

  13. Dagtekin, I. and Oztop, H.F., Natural Convection Heat Transfer by Heated Partitions within Enclosure, Int. Commun. Heat Mass Transfer, 2001, vol. 28, pp. 823–834.

    Article  Google Scholar 

  14. Heidary H., Kermani, M.J., and Pirmohammadi, M., Partition Effect on Thermo Magnetic Natural Convection and Entropy Generation in Inclined Porous Cavity, J. Appl. Fluid Mech., 2016, vol. 9, pp. 119–130.

    Article  Google Scholar 

  15. Pirmohammadi, M., Ghassemi, M., and Hamedi, M., Effect of Inclination Angle on Magneto-Convection inside a Tilted Enclosure, IEEE Trans. Magnet., 2010, vol. 46, no. 9, pp. 3697–3700.

    Article  ADS  Google Scholar 

  16. Varol, Y., Oztop, H.F., and Varol A., Natural Convection in Porous Triangular Enclosures with a Solid Adiabatic Fin Attached to the Horizontal Wall, Int. Commun. Heat Mass Transfer, 2007, vol. 34, pp. 19–27.

    Article  Google Scholar 

  17. Khanafer, K., Al-Azmi, B., Marafie A., and Pop, I., Non-Darcian Effects on Natural Convection Heat Transfer in a Wavy Porous Enclosure, Int. J. Heat Mass Transfer, 2009, vol. 52, pp. 1887–1896.

    Article  Google Scholar 

  18. Rahman, M.M., Saidur, R., Mekhilef, S., Borhan Uddin, M., and Ahsan, A., Double-Diffusive Buoyancy Induced Flow in a Triangular Cavity with Corrugated Bottom Wall: Effects of Geometrical Parameters, Int. Commun. Heat Mass Transfer, 2013, vol. 45, pp. 64–74.

    Article  Google Scholar 

  19. Nasrin, R., Alim, M.A., and Chamkha, A.J., Combined Convection Flow in Triangular Wavy Chamber Filled with Water–CuO Nanofluid: Effect of Viscosity Models, Int. Commun. Heat Mass Transfer, 2012, vol. 39, pp. 1226–1236.

    Article  Google Scholar 

  20. Mohebbi, R., Khalilabad, S.H., and Ma, Y., Effect of\(\gamma\)-Al2O3/Water Nanofluid on Natural Convection Heat Transfer of Corrugated Shaped Cavity: Study the Different Aspect Ratio of Grooves, J. Appl. Fluid Mech., 2019, vol. 12, pp. 1151–1160.

    Article  Google Scholar 

  21. Selimefendigil, F. and Öztop, H.F., Role of Magnetic Field and Surface Corrugation on Natural Convection in a Nanofluid Filled 3D Trapezoidal Cavity, Int. Commun. Heat Mass Transfer, 2018, vol. 95, pp. 182–196.

    Article  Google Scholar 

  22. Azizul, F.M., Alsabery A.I., and Hashim, I., Heatlines Visualisation of Mixed Convection Flow in a Wavy Heated Cavity Filled with Nanofluids and Having an Inner Solid Block, Int. J. Mech. Sci., 2020, vol. 175, p. 105529.

    Article  Google Scholar 

  23. Abdelmalek, Z., Tayebi, T., Dogonchi, A.S., Chamkha, A.J., Ganji, D.D., and Tlili Eskander, I.J., Role of Various Configurations of a Wavy Circular Heater on Convective Heat Transfer within an Enclosure Filled with Nanofluid, Int. Commun. Heat Mass Transfer, 2020, vol. 113, p. 104525.

    Article  Google Scholar 

  24. Heidary, H., Abbassi, A., and Kermani, M.J., Enhanced Heat Transfer with Corrugated Flow Channel in Anode Side of Direct Methanol Fuel Cells, Energy Convers. Manag., 2013, vol. 75, pp. 748–760.

    Article  Google Scholar 

  25. Corcione M., Empirical Correlating Equations for Predicting the Effective Thermal Conductivity and Dynamic Viscosity of Nanofluids, Energy Convers. Manag., 2011, vol. 52, pp. 789–793.

    Article  Google Scholar 

  26. Cianfrini, C., Corcione, Habib, M.E., and Quintino, A., Buoyancy-Induced Convection in Al2O3/Water Nanofluids from an Enclosed Heater, European J. Mech.-B/Fluids, 2014, vol. 48, pp. 123–134.

    Article  ADS  Google Scholar 

  27. Corcione, M., Cianfrini, M., and Quintino, A., Enhanced Natural Convection Heat Transfer of Nanofluids in Enclosures with Two Adjacent Walls Heated and the Two Opposite Walls Cooled, Int. J. Heat Mass Transfer, 2015, vol. 88, pp. 902–913.

    Article  Google Scholar 

  28. Maxwell-Garnett, J.C., Colours in Metal Glasses and in Metallic Films, Philos. Trans. Royal Soc. A, 1904, vol. 203, pp. 385–420.

    MATH  ADS  Google Scholar 

  29. Brinkman, H.C., The Viscosity of Concentrated Suspensions and Solutions, J. Chem. Phys., 1952, vol. 20, p. 571.

    Article  ADS  Google Scholar 

  30. Patankar, S.V. and Spalding, D.B., A Calculation Procedure for Heat, Mass and Momentum Transfer in Three-Dimensional Parabolic Flows, Int. J. Heat Mass Transfer, 1972, vol. 15, pp. 1787–1806.

    Article  Google Scholar 

  31. Rhie, C.M. and Chow, W.L., Numerical Study of the Turbulent Flow Past an Airfoil with Trailing Edge Separation, AIAA J., 1983, vol. 21, pp. 1525–1532.

    Article  ADS  Google Scholar 

  32. Barakos, G. and Mitsoulis, E., Natural Convection Flow in a Square Cavity Revisited: Laminar and Turbulent Models with Wall Functions, Int. J. Num. Methods Fluids, 1994, vol. 18, pp. 695–719.

    Article  ADS  Google Scholar 

  33. de Vahl Davis G., Natural Convection of Air in a Square Cavity, a Benchmark Numerical Solution, Int. J. Num. Methods Fluids, 1962, vol. 3, pp. 249–264.

    Article  Google Scholar 

  34. Fusegi, T., Hyun, J.M., Kuwahara, K., and Farouk, B., A Numerical Study of Three-Dimensional Natural Convection in a Differentially Heated Cubical Enclosure, Int. J. Heat Mass Transfer, 1991, vol. 34, pp. 1543–1557.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Pirmohammadi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Heidary, H., Pirmohammadi, M. Effect of Nano-Particles on Natural Convection in Corrugated-Wall Enclosure. J. Engin. Thermophys. 31, 489–505 (2022). https://doi.org/10.1134/S1810232822030109

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1810232822030109

Navigation