Skip to main content
Log in

Radiative Heat Fluxes in Orbital Space Flight

  • Published:
Journal of Engineering Thermophysics Aims and scope

Abstract

The heat exchange between a spacecraft and its environment is an important factor determining the thermal regime of the spacecraft. In this work, we collected, sorted, and supplemented well-known algorithms for calculating the external thermal effect on a spacecraft in a near-planet orbit (of arbitrary planet of the Solar system). We present a technique of determination of external radiative heat fluxes on an arbitrarily oriented spacecraft surface, based on trajectory data. The influence of the spacecraft rotation about a longitudinal axis on the heat fluxes is considered. The results of numerical simulations are presented in the paper.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

REFERENCES

  1. Favorskii, O.N. and Kadaner, Y.S., Voprosy teploobmena v kosmose (Issues of Heat Transfer in Space), Moscow: Vysshaya shkola, 1967.

    Google Scholar 

  2. Zaletaev, V.M., Kapinos, Yu.V., and Surguchev, O.V., Raschet teploobmena kosmicheskogo apparata (Calculation of the Heat Transfer of Spacecraft), Moscow: Mashinostroenie, 1979.

    Google Scholar 

  3. Malozemov, V.V., Rozhnov, V.F., and Pravetskii, V.N., Systemy zhizneobespecheniya ekipazhei letatel’nykh apparatov (Life Support Systems for Aircraft Crews), Moscow: Mashinostroenie, 1986.

    Google Scholar 

  4. Carleton, K.L. and Marinelli, W.J., Spacecraft Thermal Energy Accommodation from Atomic Recombination, J. Thermophys. Heat Transfer, 1992, vol. 6, no. 4; https://doi.org/10.2514/3.11547.

    Article  Google Scholar 

  5. Iqbal, M., An Introduction to Solar Radiation, San Diego: Academic Press, 1983.

    Google Scholar 

  6. Hovenier, J.W. and Muñoz O., Light Scattering in the Solar System: An Introductory Review, J. Quant. Spectr. Rad. Transfer, 2009, vol. 110, nos. 14–16, pp. 1280–1292; https://doi.org/10.1016/ j.jqsrt.2009.02.011.

    Article  ADS  Google Scholar 

  7. Goode, P.R., Pallé, E., Shoumko, A., Shoumko, S., Montañes-Rodriguez, P., and Koonin, S.E., Earth’s Albedo 1998–2017 as Measured from Earthshine, Geophys. Res. Lett., 2021, vol. 48, no. 17, p. e2021GL094888; https://doi.org/10.1029/2021GL094888.

    Article  ADS  Google Scholar 

  8. Datseris, G. and Stevens, B., Earth’s Albedo and Its Symmetry, AGU Adv., 2021, vol. 2, no. 3, p. e2021AV000440; https://doi.org/10.1029/2021AV000440.

    Article  ADS  Google Scholar 

  9. Guo, J., Khaksarighiri, S., Wimmer-Schweingruber, R. F., Hassler, D.M., Ehresmann, B., Zeitlin, C., et al., Directionality of the Martian Surface Radiation and Derivation of the Upward Albedo Radiation, Geophys. Res. Lett., 2021, vol. 48, no. 15, p. e2021GL093912; https://doi.org/10.1029/2021GL093912.

    Article  ADS  Google Scholar 

  10. Galileiskii, V.P., Grishin, A.I., Morozov, A.M., et al., Specular Reflection from Atmospheric Nonspherical Particles, Proc. SPIE 2578, Passive Infrared Remote Sensing of Clouds and the Atmosphere III, 1995; https://doi.org/10.1117/12.228954.

  11. Jackson, D.C., Hohlfelder, R.J., Longenbaugh, R.S., and Nelsen, J.M., Jr., On Identifying the Specular Reflection of Sunlight in Earth-Monitoring Satellite Data, Sandia National Laboratories, 2009; https://doi.org/10.2172/972492.

  12. Kidder, S.Q. and Vonder Haar, T.H., Satellite Meteorology: An Introduction, San Diego: Academic Press, 1995.

    Google Scholar 

  13. Modest, M.F., Solar Flux Incident on an Orbiting Surface after Reflection from the Planet, AIAA J., 1980, vol. 18, no. 6, pp. 727–730; https://doi.org/10.2514/3.7685.

    Article  ADS  Google Scholar 

  14. Kozlov, L.V., Nusinov, M.D., et. al., Modelirovanie teplovykh rezhimov kosmicheskogo apparata i okruzhayushchei ego sredy (Modeling of Spacecraft Thermal Regimes and Its Environment), Petrov, G.I., Ed., Moscow: Mashinostroenie, 1971.

    Google Scholar 

  15. Seager, S., Exoplanet Atmospheres: Physical Processes, Princeton Univ. Press, 2010, pp. 35–38.

    Book  Google Scholar 

  16. Alifanov, O.M., Paleshkin, A.V., Terent’ev, V.V., and Firsyuk, S.O., Mathematical Modeling of the Thermal State of an Isothermal Element with Account of the Radiant Heat Transfer Between Parts of a Spacecraft, J. Engin. Phys. Thermophys., 2016, vol. 89, pp. 179–185; https://doi.org/10.1007/s10891-016-1365-0.

    Article  ADS  Google Scholar 

  17. Stengel, R.F., Flight Dynamics, Princeton, NJ: Princeton Univ. Press, 2004.

    Google Scholar 

  18. Konstantinov, M.S. and Thein, M., Method of Interplanetary Trajectory Optimization for the Spacecraft with Low Thrust and Swing-Bys, Acta Astr., 2017, vol. 136, pp. 297–311; https://doi.org/10.1016/ j.actaastro.2017.02.018.

    Article  ADS  Google Scholar 

  19. Konstantinov, M.S. and Fedotov, G.G., Estimation of an Opportunity of Mercury Mission with Use of Solar Electric Propulsion, Acta Astr., 2002, vol. 51, pp. 807–818; https://doi.org/10.1016/S0094-5765(02)00028-0.

    Article  ADS  Google Scholar 

  20. Hagihara, Y., Celestial Mechanics: Dynamical Principles and Transformation Theory, vol. 1, Cambridge: MIT Press, 1970.

    MATH  Google Scholar 

  21. Ozisik, M.N., Heat Transfer: A Basic Approach, McGraw-Hill, 1985.

    MATH  Google Scholar 

  22. Tholen, D.J., Tejfel, V.G., and Cox, A.N., Planets and Satellites, in Allen’s Astrophysical Quantities, 4th ed., Cox, A.N., Ed., Springer, 2000.

  23. Karttunen, H., Kröger, P., Oja, H., Poutanen, M., and Donner, K.J., Eds., Fundamental Astronomy, 6th ed., New York: Springer, 2016.

    Google Scholar 

  24. Kopp, G. and Lean, J.L., A New, Lower Value of Total Solar Irradiance: Evidence and Climate Significance, Geophys. Res. Lett., 2011, vol. 38, p. L01706; doi:10.1029/2010GL045777.

    Article  ADS  Google Scholar 

  25. Kopp, G., Science Highlights and Final Updates from 17 Years of Total Solar Irradiance Measurements from the Solar Radiation and Climate Experiment/Total Irradiance Monitor (SORCE/TIM), Solar Phys., 2021, vol. 296, p. 133; https://doi.org/10.1007/s11207-021-01853-x.

    Article  ADS  Google Scholar 

  26. Gritsevich (Krainova), I.V. and Nenarokomov, A.V., Determination of External Heat Loading on the Surface of Orbital Spacecraft, Teplovye Protsessy v Tekhnike, 2013, vol. 5, no. 10, pp. 445–457.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. V. Nenarokomov.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Krainova, I.V., Nenarokomov, A.V., Nikolichev, I.A. et al. Radiative Heat Fluxes in Orbital Space Flight. J. Engin. Thermophys. 31, 441–457 (2022). https://doi.org/10.1134/S1810232822030079

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1810232822030079

Navigation