Skip to main content
Log in

Thermophysical Properties of Magnesium in Solid and Liquid States

  • Published:
Journal of Engineering Thermophysics Aims and scope

Abstract

A number of thermophysical properties of pure magnesium are measured with high accuracy over a wide range of temperatures in the solid and liquid states. The enthalpy and isobaric heat capacity of magnesium are investigated over a temperature range of 431–1176 K with application of a massive high-temperature isothermal drop calorimeter. The estimated error in the data on enthalpy and heat capacity is 0.2% and 0.5%, respectively. The enthalpy of fusion of magnesium is 8455 ± 22 J/mol. The thermal conductivity and thermal diffusivity of solid and liquid magnesium are measured in the range of 291 K to 1221 K by the laser flash method. The errors in the thermal conductivity measurements are 2–5% for the solid state and 4–6% for the liquid one. It is shown that the thermal conductivity and thermal diffusivity of magnesium decrease about 1.5 times during melting. Our results are compared with data in the literature and with calculations based on the Wiedemann–Franz law. Approximation equations are constructed and tables of recommended values of the investigated properties of magnesium are presented for a temperature range of 291–1221 K for the condensed state.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

REFERENCES

  1. Zhou, J.M., Yang, Y., Magne, L., and Wang, G., Determination of Thermal Conductivity of Magnesium-Alloys, J. Cent. South Univ. Technol., 2001, vol. 8, pp. 60–63.

    Article  Google Scholar 

  2. Ying, T., Zheng, M.Y., Li, Z.T., and Qiao, X.G., Thermal Conductivity of As-Cast and As-Extruded Binary Mg–Al Alloys, J. Alloys Compd., 2014, vol. 608, pp. 19–24.

    Article  Google Scholar 

  3. Ying, T., Chi, H., Zheng, M., Li, Z., and Uher, C., Low-Temperature Electrical Resistivity and Thermal Conductivity of Binary Magnesium Alloys, Acta Mater., 2014, vol. 80, pp. 288–295.

    Article  Google Scholar 

  4. Powell, R.W., Hickman, M.J., and Tye, R.P., The Thermal and Electrical Conductivity of Magnesium and Some Magnesium Alloys, Metallurgia, 1964, vol. 70, pp. 159–163.

    Google Scholar 

  5. Mannchen, W., Heat Conductivity, Electrical Conductivity and the Lorenz Number for a Few Light Metal Alloys, Z. Metallk., 1931, vol. 23, pp. 193–196.

    Google Scholar 

  6. Schofield, F.H., The Thermal and Electrical Conductivities of Some Pure Metals, Proc. Roy. Soc., 1925, vol. 107, pp. 206–227.

  7. Abdullaev, R.N., Khairulin, R.A., Kozlovskii, Yu.M., Agazhanov, A.Sh., and Stankus, S.V., Density of Magnesium and Magnesium-Lithium Alloys in Solid and Liquid States, Trans. Nonferrous Met. Soc. China, 2019, vol. 29, pp. 507–514.

    Article  Google Scholar 

  8. Pathak, P.D. and Desai, R.J., Thermal Expansion of Magnesium and Temperature Variation of Negative Second Moment of Its Frequency Spectrum, Phys. Status Solidi A, 1981, vol. 66, pp. 179–182.

    Article  ADS  Google Scholar 

  9. Lu, X.G., Selleby, M., and Sundman, B., Assessments of Molar Volume and Thermal Expansion for Selected bcc, fcc and hcp Metallic Elements, Calphad, 2005, vol. 29, pp. 68–89.

    Article  Google Scholar 

  10. McGonigal, P.J., Kirshenbaum, A.D., and Grosse, A.V., The Liquid Temperature Range, Density, and Critical Constants of Magnesium, J. Phys. Chem., 1962, vol. 66, pp. 737–740.

    Article  Google Scholar 

  11. Stankus, S.V. and Khairulin, R.A., Temperature and Interphase Changes in the Density of Magnesium in the Solid and Liquid States, Tsvetn. Met., 1990, vol. 9, pp. 65–67.

    Google Scholar 

  12. Kúdela, S., Jr., Rudajevová, A., and Kúdela, S., Anisotropy of Thermal Expansion in Mg and Mg4Li-Matrix Composites Reinforced by Short Alumina Fibers, Mater. Sci. Eng. A, 2007, vol. 462, pp. 239–242.

    Article  Google Scholar 

  13. Awbery, J.H. and Griffiths, E., The Latent Heat of Fusion of Some Metals, Proc. Phys. Soc., 1925, vol. 38, pp. 378–398.

    Google Scholar 

  14. Stull, D.R. and McDonald, R.A., The Enthalpy and Heat Capacity of Magnesium and of Type 430 Stainless Steel from 700 to 1100°K, J. Am. Chem. Soc., 1955, vol. 77, pp. 5293–5293.

    Article  Google Scholar 

  15. Eastman, E.D., Williams, A.M., and Young, T.F., The Specific Heats of Magnesium, Calcium, Zinc, Aluminum and Silver at High Temperatures, J. Am. Chem. Soc., 1924, vol. 46, pp. 1178–1183.

    Article  Google Scholar 

  16. McDonald, R.A., Enthalpy, Heat Capacity, and Heat of Fusion of Magnesium from 404° to 1300° K, J. Chem. Eng. Data, 1967, vol. 12, pp. 131–132.

    Article  Google Scholar 

  17. Totskii, E.E. and Tonkonogov, V.B., The Saturation Vapor Pressure of Liquid Magnesium and the Thermodynamic Functions for the Condensed Phase, High Temp., 1985, vol. 23, pp. 547–551.

    Google Scholar 

  18. Shpil’rain, E.E., Kagan, D.N., Salikhov, T.P., and Ul’yanov, S.N., The Specific Heat of Magnesium in the Solid and Molten Phases up to 1600 K, Teplofiz. Vys. Temp., 1984, vol. 22, pp. 619–621.

    Google Scholar 

  19. Touloukian, Y.S., Kirby R.K., and Taylor, R.E., Thermophysical Properties of Matter, vol. 12, New York: Plenum, 1975.

    Google Scholar 

  20. Touloukian, Y.S., Powell, R.W., Ho, C.Y., and Nicolaou, M.C., Thermophysical Properties of Matter, vol. 10, Washington: Plenum, 1973.

    Google Scholar 

  21. Touloukian, Y.S., Powell, R.W., Ho, C.Y., and Nicolaou, M.C., Thermophysical Properties of Matter, vol. 1, New York: Plenum, 1970.

    Google Scholar 

  22. Zinoviev, V.E., Teplofizicheskie svoistva metallov pri vysokikh temperaturakh (Thermophysical Properties of Metals at High Temperatures), Moscow: Metallurgiya, 1989.

    Google Scholar 

  23. Glushko, V.P., Gurvich, L.V., Bergman, G.A., Veits, I.V., Medvedev, V.A., Khachkuruzov, G.A., and Yungman, V.S., Termodinamicheskie svoistva individual’nykh veshchestv, tom 3 (Thermodynamic Properties of Individual Substances, vol. 3), Moscow: Nauka, 1981.

    Google Scholar 

  24. Novikova, S.I., Teplovoe rashirenie tevrdykh tel (Thermal Expansion of Solids), Moscow: Nauka, 1974.

    Google Scholar 

  25. Shpil’rain, E.E., Kagan, D.N., and Ul’yanov, S.N., Termodinamicheskie funktsii elementov podgruppy shchelochnozemel’nykh metallov (Thermodynamic Functions of Elements of the Subgroup of Alkaline Earth Metals (Heat Capacity, Enthalpy, Entropy, Gibbs Energy)), Moscow: IVTAN SSSR, 1986.

    Google Scholar 

  26. Alcock, C.B., Chase, M.W., and Itkin, V.P., Thermodynamic Properties of the Group IIA Elements, J. Phys. Chem. Ref. Data, 1993, vol. 22, pp. 1–85.

    Article  ADS  Google Scholar 

  27. Li, S., Yang, X., Hou, J., and Du, W., A Review on Thermal Conductivity of Magnesium and its Alloys, J. Magnes. Alloys, 2020, vol. 8, pp. 78–90.

    Article  Google Scholar 

  28. Ho, C.Y., Powell, R.W., and Liley, P.E., Thermal Conductivity of the Elements, J. Phys. Chem. Ref. Data, 1972, vol. 1, pp. 279–421.

    Article  ADS  Google Scholar 

  29. Ho, C.Y., Powell, R.W., and Liley, P.E., Thermal Conductivity of the Elements: A Comprehensive Review, J. Phys. Chem. Ref. Data, 1974, vol. 3, pp. 1–796.

    Google Scholar 

  30. NIST Alloy Data Web Application; https://trc.nist.gov/MetalsAlloyUI/.

  31. SpringerMaterials–Properties of Materials; https://materials.springer.com/.

  32. March, N.H. and Tosi, M.P., Introduction to Liquid State Physics, Singapore: World Scientific, 2002.

    Book  Google Scholar 

  33. Tankeshwar, K. and March, N.H., Relation between Electrical and Thermal Conductivities in Charged Condensed Phases, Phys. Chem. Liq., 1996, vol. 31, pp. 39–47.

    Article  Google Scholar 

  34. Ziman, J., Principles of the Theory of Solids, Cambridge University Press, 1965.

    MATH  Google Scholar 

  35. Cook, J.G. and Van der Meer, M.P., The Transport Properties of Ca, Sr and Ba, J. Phys. F: Met. Phys., 1973, vol. 3, pp. L130–L133.

    Article  ADS  Google Scholar 

  36. Song, J., She, J., Chen, D., and Pan, F., Latest Research Advances on Magnesium and Magnesium Alloys Worldwide, J. Magnes. Alloys, 2020, vol. 8, pp. 1–41.

    Article  Google Scholar 

  37. Wu, R., Yan, Y., Wang, G., Murr, L.E., Han, W., Zhang, Z., and Zhang, M., Recent Progress in Magnesium–Lithium Alloys, Int. Mater. Rev., 2015, vol. 22, pp. 65–100.

    Article  ADS  Google Scholar 

  38. Agazhanov, A.Sh., Abdullaev, R.N., Samoshkin, D.A., and Stankus, S.V., Thermal Conductivity of Lithium, Sodium and Potassium in The Liquid State, Phys. Chem. Liq., 2020, vol. 58, pp. 760–768.

    Article  Google Scholar 

  39. Agazhanov, A.Sh., Abdullaev, R.N., Samoshkin, D.A., and Stankus, S.V., Thermal Conductivity of Liquid Cesium in the Temperature Interval of 302–973 K, High Temp.–High Press., 2018, vol. 47, pp. 311–321.

    Google Scholar 

  40. Stankus, S.V., Savchenko, I.V., and Yatsuk, O.S., Experimental Investigation of the Enthalpy and Heat Capacity of Liquid Cesium, J. Eng. Therm., 2018, vol. 27, pp. 30–35.

    Article  Google Scholar 

  41. Samoshkin, D.A., Savchenko, I.V., Stankus, S.V., and Agazhanov, A.Sh., Thermal Conductivity and Thermal Diffusivity of Samarium in the Temperature Range of 293–1773 K, Thermophys. Aeromech., 2018, vol. 25, pp. 735–740.

    Article  ADS  Google Scholar 

  42. Samoshkin, D.A., Savchenko, I.V., Stankus, S.V., and Agazhanov, A.Sh., Thermal Diffusivity and Thermal Conductivity of Neodymium in the Temperature Range 293 to 1773 K, J. Eng. Therm., 2018, vol. 27, pp. 399–404.

    Article  Google Scholar 

  43. Nayeb-Hashemi, A.A. and Clark, J.B., Mg–Mo (Magnesium-Molybdenum), in Binary Alloy Phase Diagrams, Massalski, T.B., Ed., 2nd ed., Materials Park, Ohio: ASM International, 1990, pp. 2520–2522.

  44. Saboungi, M.-L. and Blander, M., Electromotive Force Measurements in Molten Lithium-Magnesium Alloys, J. Electrochem. Soc., 1975, vol. 122, pp. 1631–1634.

    Article  ADS  Google Scholar 

  45. Taylor, R.H., Curtarolo, S., and Hart, G.L.W., Guiding the Experimental Discovery of Magnesium Alloys, Phys. Rev. B, 2011, vol. 84, pp. 084101-1–084101-17.

    Article  ADS  Google Scholar 

  46. Stankus, S.V., Savchenko, I.V., and Yatsuk, O.S., A High-Temperature Drop Calorimeter for Studying Substances and Materials in the Solid and Liquid States, Instrum. Exp. Tech., 2017, vol. 60, pp. 608–613.

    Article  Google Scholar 

  47. Stankus, S.V., Savchenko, I.V., and Yatsuk, O.S., The Caloric Properties of Liquid Bismuth, High Temp., 2018, vol. 56, pp. 33–37.

    Article  Google Scholar 

  48. Glushko, V.P., Gurvich, L.V., Bergman, G.A., Veits, I.V., Medvedev, V.A., Khachkuruzov G.A., and Yungman, V.S., Termodinamicheskie svoistva individual’nykh veshchestv, tom 4 (Thermodynamic Properties of Individual Substances, vol. 4), Moscow: Nauka, 1982.

    Google Scholar 

  49. Parker, W.J., Jenkins, R.J., Butler, C.P., and Abbott, G.L., Flash Method of Determining Thermal Diffusivity, Heat Capacity, and Thermal Conductivity, J. Appl. Phys., 1961, vol. 32, pp. 1679–1684.

    Article  ADS  Google Scholar 

  50. Cape, J.A. and Lehman, G.W., Temperature and Finite Pulse-Time Effects in the Flash Method for Measuring Thermal Diffusivity, J. Appl. Phys., 1963, vol. 34, pp. 1909–1913.

    Article  ADS  Google Scholar 

  51. Blumm, J. and Opfermann, J., Improvement of the Mathematical Modeling of Flash Measurements, High Temp.–High Press., 2002, vol. 34, pp. 515–521.

  52. Stankus, S.V. and Savchenko, I.V., Laser Flash Method for Measurement of Liquid Metals Heat Transfer Coefficients, Thermophys. Aeromech., 2009, vol. 16, pp. 585–592.

    Article  ADS  Google Scholar 

  53. Agazhanov, A.Sh., Abdullaev, R.N., Samoshkin, D.A., and Stankus, S.V., Thermal Conductivity and Thermal Diffusivity of Li-Pb Eutectic in the Temperature Range of 293–1273 K, Fusion Eng. Des., 2020, vol. 152, pp. 111456-1–111456-5.

    Article  Google Scholar 

  54. Peletski, V.E., Chekhovskoi, V.Ya., and Latyev, L.N., Teplofizicheskie svoistva molibdena i ego splavov (Thermophysical Properties of Molybdenum and Its Alloys), Moscow: Metallurgy, 1990.

    Google Scholar 

  55. Savchenko, I.V., Measurement of the Thermal Diffusivity of Solid Materials by the Laser Flash Method, in Materials of the 12th All-Russian Scientific Conference of Physics Students and Young Scientists (VNKSF-12), ASF Russia, Ekaterinburg, Novosibirsk, 2006, p. 287.

  56. Getling, A.V., Rayleigh–Benard Convection: Structures and Dynamics, Singapore: World Scientific, 1998.

    Book  MATH  Google Scholar 

  57. Ho, C.Y., Ackerman, M.W., Wu, K.Y., Havill, T.N., Bogaard, R.H., Matula, R.A., Oh, S.G., and James, H.M., Electrical Resistivity of Ten Selected Binary Alloy Systems, J. Phys. Chem. Ref. Data, 1983, vol. 12, pp. 183–322.

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. N. Abdullaev.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abdullaev, R.N., Agazhanov, A.S., Khairulin, A.R. et al. Thermophysical Properties of Magnesium in Solid and Liquid States. J. Engin. Thermophys. 31, 384–401 (2022). https://doi.org/10.1134/S181023282203002X

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S181023282203002X

Navigation