Skip to main content
Log in

Plasma Ignition System to Start Up Pulverized Coal Boilers: Experimental Simulation and Full-Scale Test

  • Published:
Journal of Engineering Thermophysics Aims and scope

Abstract

The conditions of coal ignition and combustion with application of plasma ignition system have been studied experimentally. Research on plasma ignition of coal fuel flow was carried out on a pilot setup. The conditions were close to the industrial ones used for start-up of coal boilers. The operating range of the velocities of pulverized coal flow in the electric arc unit has been determined. It has been established that a stable process of ignition and further combustion of coal is possible at these flow velocities in the electric arc unit. The experimental setup was started up from a cold state and heated to a temperature of 1000°C; the start-up time did not exceed 200 s. Based on the obtained experimental results, an industrial prototype of plasma ignition system (PIS) was designed and tested with a TP-10 boiler with a capacity of 220 tons of steam per hour. The boiler was started up from a cold state by means of the PIS technology without use of fuel oil; the start-up time was 5 hours. After the pass of pulverized coal through the PIS, stable ignition and combustion of pulverized coal flame with a temperature of 1350°C was observed in the boiler. For the first time, a technology for ignition of pulverized coal boilers without use of fuel oil was created and implemented on the basis of a starting burner with plasma ignition of fuel. The technology features positive economic and environmental parameters in comparison with the widespread technology of starting up coal-fired boilers with liquid fuel combustion.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

REFERENCES

  1. World Energy Scenarios 2019: European Regional Perspectives, WEC; https://www.worldenergy.org/.

  2. Henderson, C., Increasing the Flexibility of Coal-Fired Power Plants, IEA Clean Coal Center; http://www.iea.org.

  3. World Energy Outlook 2017, International Energy Agency; http://www.eia.gov.

  4. Coal 2019 Analysis and Forecast to 2024, International Energy Agency; http://www.eia.gov.

  5. Hübel, M., Meinke, S., Andrén, M., Wedding, C., Nocke, Y., Gierow, C., Hassel, E., and Funkquist, J., Modelling and Simulation of a Coal-Fired Power Plant for Start-Up Optimization, Appl. Energy, 2017, vol. 208, pp. 319–331; https://doi.org/10.1016/j.apenergy.2017.10.033.

    Article  Google Scholar 

  6. Taler, J., Dzierwa, P., Taler, D., and Harchut, P., Optimization of the Boiler Start-Up Taking into Account Thermal Stresses, Energy, 2015, vol. 92, pp. 160–170; https://doi.org/10.1016/j.energy.2015.03.095.

    Article  Google Scholar 

  7. Brouwer, A.S., van den Broek, M., Seebregts, A., and Faaij, A., Operational Flexibility and Economics of Power Plants in Future Low-Carbon Power Systems, Appl. Energy, 2015, vol. 156, pp. 107–128; https://doi.org/10.1016/j.apenergy.2015.06.065.

    Article  Google Scholar 

  8. Han, Y., Shen, B., and Zhang, A.A, Techno-Economic Assessment of Fuel Switching Options of Addressing Environmental Challenges of Coal-Fired Industrial Boilers: An Analytical Work for China, Energy Procedia, 2017, vol. 142, pp. 3083–3087; https://doi.org/10.1016/j.egypro.2017.12.448.

    Article  Google Scholar 

  9. Messerle, V.E., Karpenko E.I., and Ustimenko A.B., Plasma Assisted Power Coal Combustion in the Furnace of Utility Boiler: Numerical Modeling and Full-Scale Test, Fuel, 2014, vol. 126, pp. 294–300; https://doi.org/10.1016/j.fuel.2014.02.047.

    Article  Google Scholar 

  10. Mączka, T., Pawlak-Kruczek, H., Niedzwiecki, L., Ziaja, E., and Chorążyczewski, A., Plasma Assisted Combustion as a Cost-Effective Way for Balancing of Intermittent Sources: Techno-Economic Assessment for 200 MWel Power Unit, Energies, 2020, vol. 13, pp. 50–56; https://doi.org/10.3390/en13195056.

    Article  Google Scholar 

  11. Messerle, V.E., Askarova, A.S., Bolegenova, S.A., Maximov, V.Yu., and Nugymanova, A.O., 3D-Modelling of Kazakhstan Low-Grade Coal Burning in Power Boilers of Thermal Power Plant with Application of Plasma Gasification and Stabilization Technologies, J. Phys. Conf. Ser., 2019, vol. 1261, p. 012022; http://dx.doi.org/10.1088/1742-6596/1261/1/012022.

    Article  Google Scholar 

  12. Glushkov, D.O., Kuznetsov, G.V., Chebochakova, D.A., Lyakhovskaya, O.E., Shlegel, N.E., Anufriev, I.S., and Shadrin, E.Y., Experimental Study of Coal Dust Ignition Characteristics at Oil-Free Start-Up of Coal-Fired Boilers, Appl. Thermal Engin., 2018, vol. 142, pp. 371–379; https://doi.org/10.1016/ j.applthermaleng.2018.07.010.

    Article  Google Scholar 

  13. Karpenko, E.I., Karpenko, Yu.E., Messerle, V.E., and Ustimenko, A.B., Using Plasma-Fuel Systems at Eurasian Coal-Fired Thermal Power Stations, Thermal Engin., 2009, vol. 56, pp. 456-461; https://doi.org/ 10.1016/j.applthermaleng.2018.07.010.

    Article  ADS  Google Scholar 

  14. Messerle, A.V., Messerle, V.E., and Ustimenko, A.B., Plasma Thermochemical Preparation for Combustion of Pulverized Coal, High Temp., 2017, vol. 55, pp. 352–360; https://doi.org/10.1016/ j.applthermaleng.2018.07.010.

    Article  Google Scholar 

  15. Fridman, A., in Plasma Chemistry, Cambridge University Press, 2008, pp. 707–978.

  16. Starikovskii, A.Y., Anikin, N.B., Kosarev, I.N., Mintoussov, E.I., Starikovskaia, S.M., and Zhukov, V.P., Plasma-Assisted Combustion, Pure Appl. Chem., 2006, vol. 78, pp. 1265–1298.

    Article  Google Scholar 

  17. Youssefi, R., Maier, J., and Scheffknecht, G., Experimental Investigations on Plasma-Assisted Wood Pellet Ignition for the Start-Up of Biomass-Fired Power Stations, Renew. Sustain. Energy Rev., 2021, vol. 138, pp. 110–522; https://doi.org/10.1016/j.rser.2020.110522.

    Article  Google Scholar 

  18. Zhao, F., Li, S., Ren, Y., Yao, Q., and Yuan, Y., Investigation of Mechanisms in Plasma-Assisted Ignition of Dispersed Coal Particle Streams, Fuel, 2016, vol. 186, pp. 518–524; https://doi.org/10.1016/ j.fuel.2016.08.078.

    Article  Google Scholar 

  19. Messerle, V.E., Ustimenko, A.B., and Lavrichshev, O.A., Plasma Coal Conversion Including Mineral Mass Utilization, Fuel, 2017, vol. 203, pp. 877–883; https://doi.org/10.1016/j.fuel.2017.05.037.

    Article  Google Scholar 

  20. Safronov, A.A., Kuznetsov, V.E., Vasilieva, O.B., Dudnik, Y.D., and Shiryaev, V.N., AC Plasma Torches. Arc Initiation Systems. Design Features and Applications, Instrum. Exp. Techn., 2019, vol. 62, pp. 193–200.

    Article  Google Scholar 

  21. Messerle, V., Ustimenko, A., and Lavrichshev, O., Plasma–Fuel Systems for Clean Coal Technologies, Procs. Instit. Civil Engineers-Energy, 2021, vol. 174, pp. 79–83; https://doi.org/10.1680/jener.19.00053.

    Article  Google Scholar 

  22. Shen, T., Song, M., Huang, Y., Zhu, R., Li, Z., Yu, Q., and Wang, M., The Effectiveness of a Novel Coal-Igniting-Fuel Technology and Application in a Direct Current Burner, Fuel, 2021, vol. 306, p. 121503; https://doi.org/10.1016/j.fuel.2021.121503.

    Article  Google Scholar 

  23. Surov, A.V., Popov, S.D., Popov, V.E., Subbotin, D.I., Serba, E.O., Spodobin, V.A., Nakonechny, Gh.V., and Pavlov, A.V., Multi-Gas AC Plasma Torches for Gasification of Organic Substances, Fuel, 2017, vol. 203, pp. 1007–1014; https://doi.org/10.1016/j.fuel.2017.02.104.

    Article  Google Scholar 

  24. Youssefi, R., Maier, J., and Scheffknecht, G., Pilot-Scale Experiences on a Plasma Ignition System for Pulverized Fuels, Energies, 2021, vol. 14, p. 4726; https://doi.org/10.3390/en14164726.

    Article  Google Scholar 

  25. Burdukov, A.P., Butakov, E.B., and Chernova, G.V., Experimental Studies of Ignition of a 5MW Semi-Industrial Installation in Ekibastuz Coal Using Electrochemical Activation Technology, J. Phys. Conf. Ser., 2019, vol. 1261, p. 012006; http://dx.doi.org/10.1088/1742-6596/1261/1/012006.

    Article  Google Scholar 

  26. Sosin, D.V., Shtegman, A.V., Ryzhiy, I.A., Fomenko, E.A., Bor, S.D., Tsyrenov, C.O., and Yakovenko, A.V., Increasing the Efficiency and Increasing the Resource of the Plasma-Ignition System by Its Modernization at Gusinoozerskaya TPP, Thermal Engin., 2021, vol. 68, pp. 302–309.

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. B. Butakov.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Butakov, E.B., Burdukov, A.P., Alekseenko, S.V. et al. Plasma Ignition System to Start Up Pulverized Coal Boilers: Experimental Simulation and Full-Scale Test. J. Engin. Thermophys. 31, 375–383 (2022). https://doi.org/10.1134/S1810232822030018

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1810232822030018

Navigation