Skip to main content
Log in

Utilization of bentonite as a low-cost adsorbent for removal of 95Zr(IV), 181Hf(IV) and 95Nb(V) radionuclides from aqueous solutions

  • Published:
Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

Abstract

Adsorption behaviour of 95Zr(IV), 181Hf(IV) and 95Nb(V) radionuclides onto bentonite is investigated in this study. Optimization of parameters is governed by conducting the adsorption experiments at different pHs, contact time, adsorbent mass and temperature. Distribution coefficient values of 21,388, 19,869 and 12,866 mL/g for 95Zr(IV), 181Hf(IV) and 95Nb(V) radionuclides, respectively, are achieved at pH 2.5. Contact time of 120 min was sufficient to reach equilibrium and the Lagergren kinetic model was appropriate to describe the kinetic data of zirconium. Of the studied adsorption isotherms, Redlich–Peterson was the best model to fit the adsorption equilibrium data of zirconium onto bentonite. The maximum adsorption capacity of bentonite toward zirconium is found to be 63.35 mg/g. The obtained values of enthalpy change and free energy change showed that adsorption of radionuclides onto bentonite was endothermic and spontaneous processes. Bentonite succeeded to efficiently remove the studied radionuclides even in presence of high concentrations of foreign ions. Bentonite succeeded to adsorb 95Zr(IV), 181Hf(IV) and 95Nb(V) radionuclides from radioactive process wastewater with distribution coefficient values of 10,422, 15,453 and 9774 mL/g, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Yavari R, Davarkhah R (2013) Application of modified multiwall carbon nanotubes as a sorbent for zirconium (IV) adsorption from aqueous solution. J Radioanal Nucl Chem 298:835–845. https://doi.org/10.1007/s10967-013-2476-0

    Article  CAS  Google Scholar 

  2. Bhatti HN, Zaman Q, Kausar A, Noreen S, Iqbal M (2016) Efficient remediation of Zr(IV) using citrus peel waste biomass: kinetic, equilibrium and thermodynamic studies. Ecol Eng 95:216–228. https://doi.org/10.1016/j.ecoleng.2016.06.087

    Article  Google Scholar 

  3. Hanif A, Bhatti HN, Hanif MF (2015) Removal of zirconium from aqueous solution by Ganoderma lucidum: biosorption and bioremediation studies. Desalin Water Treat 53:195–205. https://doi.org/10.1080/19443994.2013.837005

    Article  CAS  Google Scholar 

  4. Akhtar K, Akhtar MW, Khalid AM (2008) Removal and recovery of zirconium from its aqueous solution by Candida tropicalis. J Hazard Mater 156:108–117. https://doi.org/10.1016/j.jhazmat.2007.12.002

    Article  CAS  PubMed  Google Scholar 

  5. Faghihian H, Kabiri-Tadi M (2010) Removal of zirconium from aqueous solution by modified clinoptilolite. J Hazard Mater 178:66–73. https://doi.org/10.1016/j.jhazmat.2010.01.044

    Article  CAS  PubMed  Google Scholar 

  6. Varala S, Dharanija B, Satyavathi B, Rao VVB, Parthasarathy R (2016) New biosorbent based on deoiled karanja seed cake in biosorption studies of Zr(IV): optimization using box-behnken method in response surface methodology with desirability approach. Chem Eng J 302:786–800. https://doi.org/10.1016/j.cej.2016.05.088

    Article  CAS  Google Scholar 

  7. Smolik M, Jakóbik-Kolon A, Porański M (2009) Separation of zirconium and hafnium using Diphonix® chelating ion-exchange resin. Hydrometallurgy 95:350–353. https://doi.org/10.1016/j.hydromet.2008.05.010

    Article  CAS  Google Scholar 

  8. Hasany SM, Shamsi AM, Rauf MA (1997) Sorption of hafnium on hydrous titanium oxide using radiotracer technique. J Radioanal Nucl Chem 219:51–54. https://doi.org/10.1007/bf02040264

    Article  CAS  Google Scholar 

  9. Grayson M, Othmer K (1980) Encyclopedia of chemical technology. Wiley, New York, p 73

    Google Scholar 

  10. Hampel CA, Hawley GG (1973) The encyclopedia of chemistry. Van Nostrand Reinhold, New York, p 515

    Google Scholar 

  11. De AK, Khopkar SM, Chalmers RA (1970) Solvent extraction of metals. Van Nostrand Reinhold, London, pp 241–242

    Google Scholar 

  12. Samaddar P, Sen K (2014) Cloud point extraction: a sustainable method of elemental preconcentration and speciation. J Indu Eng Chem 20:1209–1219. https://doi.org/10.1016/j.jiec.2013.10.033

    Article  CAS  Google Scholar 

  13. Kurniawan TA, Chan GYS, Lo W, Babel S (2006) Physico–chemical treatment techniques for wastewater laden with heavy metals. Chem Eng J 118:83–98. https://doi.org/10.1016/j.cej.2006.01.015

    Article  CAS  Google Scholar 

  14. Rubio J, Souza ML, Smith RW (2002) Overview of flotation as a wastewater treatment technique. Miner Eng 15:139–155

    Article  CAS  Google Scholar 

  15. Fu F, Wang Q (2011) Removal of heavy metal ions from wastewaters: a review. J Environ Manag 92:407–418. https://doi.org/10.1016/j.jenvman.2010.11.011

    Article  CAS  Google Scholar 

  16. Mahmoud MR, Rashad GM, Elewa AM, Metwally E, Saad EA (2019) Optimization of adsorption parameters for removal of 152+154Eu(III) from aqueous solutions by using Zn-Cu-Ni ternary mixed oxide. J Mol Liq 291:111257. https://doi.org/10.1016/j.molliq.2019.111257

    Article  CAS  Google Scholar 

  17. Rashad GM, Mahmoud MR, Elewa AM, Metwally E (2016) Saad EA (2016) Removal of radiocobalt from aqueous solutions by adsorption onto low-cost adsorbents. J Radioanal Nucl Chem 309:1065–1076

    Article  CAS  Google Scholar 

  18. Soliman MA, Rashad GH, Mahmoud MR (2019) Organo-modification of montmorillonite for enhancing the adsorption efficiency of cobalt radionuclides from aqueous solutions. Environ Sci Pollut Res 26:10398–10413. https://doi.org/10.1007/s11356-019-04478-7

    Article  CAS  Google Scholar 

  19. Mahmoud MR, Rashad GH, Metwally E, Saad EA, Elewa AM (2017) Adsorptive removal of 134Cs+, 60Co2+ and 152+154Eu3+ radionuclides from aqueous solutions using sepiolite: Single and multi-component systems. Appl Clay Sci 141:72–80. https://doi.org/10.1016/j.clay.2016.12.021

    Article  CAS  Google Scholar 

  20. Hassan RS, Abass MR, Eid MA, Abdel-Galil EA (2021) Sorption of some radionuclides from liquid waste solutions using anionic clay hydrotalcite sorbent. Appl Radiat Isot 178:109985. https://doi.org/10.1016/j.apradiso.2021.109985

    Article  CAS  PubMed  Google Scholar 

  21. Yu T, Xu Z, Ye J (2019) Adsorption kinetics of Eu(III) and Am(III) onto bentonite: analysis and application of the liquid membrane tidal diffusion model. J Radioanal Nuclear Chem 319:749–757. https://doi.org/10.1007/s10967-018-6386-z

    Article  CAS  Google Scholar 

  22. Seliman AF, Lasheen YF, Youssief MAE, Abo-Aly MM, Shehata FA (2014) Removal of some radionuclides from contaminated solution using natural clay: bentonite. J Radioanal Nucl Chem 300:969–979. https://doi.org/10.1007/s10967-014-3027-z

    Article  CAS  Google Scholar 

  23. Liu C, Xu Q, Xu Y, Wang B, Long H, Fang S, Zhou D (2022) Characterization of adsorption behaviors of U(VI) on bentonite colloids: batch experiments, kinetic evaluation and thermodynamic analysis. J Radioanal Nucl Chem 331:597–607. https://doi.org/10.1007/s10967-021-08123-x

    Article  CAS  Google Scholar 

  24. Khan SA (2003) Sorption of the long-lived radionuclides cesium-134, strontium-85 and cobalt-60 on bentonite. J Radioanal Nucl Chem 258:3–6

    Article  CAS  Google Scholar 

  25. Attar LA, Safia B, Abdul Ghani B (2021) Adsorption behaviour of 226Ra and 210Pb onto thermally treated forms of bentonite. J Radioanal Nucl Chem 327:1167–1178. https://doi.org/10.1007/s10967-021-07606-1

    Article  CAS  Google Scholar 

  26. Amayri S, Fröhlich DR, Kaplan U, Trautmann N, Reich T (2016) Distribution coefficients for the sorption of Th, U, Np, Pu, and Am on Opalinus Clay. Radiochim Acta 104:33–40. https://doi.org/10.1515/ract-2015-2409

    Article  CAS  Google Scholar 

  27. Zhang J, Mallants D, Brady PV (2022) Molecular dynamics study of uranyl adsorption from aqueous solution to smectite. Appl Clay Sci 218:106361. https://doi.org/10.1016/j.clay.2021.106361

    Article  CAS  Google Scholar 

  28. Guerra DJL, Menonca ES, Silva RAR, Lara W (2012) Thermodynamic, equilibrium and kinetic studies of adsorption of pillarized and organofunctionalized smectite clay for Th4+ removal. J Ceram Sci Tech 3:17–28

    Google Scholar 

  29. Hasany SM, Chaudhary MH (1989) Adsorption of traces of hafnium on manganese dioxide from acid solutions. J Radioanal Nucl Chem 131:425–434

    Article  CAS  Google Scholar 

  30. Ghosh M, Devi PSR, Verma R, Reddy AVR (2015) Sorption of niobium on colloidal silica and the effect of humic acid. J Radioanal Nucl Chem 306:147–153. https://doi.org/10.1007/s10967-015-4055-z

    Article  CAS  Google Scholar 

  31. Söderlund M, Hakanen M, Lehto J (2015) Sorption of niobium on boreal forest soil. Radiochim Acta 103:859–869. https://doi.org/10.1515/ract-2015-2429

    Article  CAS  Google Scholar 

  32. Yamaguchi T, Ohira S, Hemmi K, Barr L, Shimada A, Maeda T, Iida Y (2020) Consideration on modeling of Nb sorption onto clay minerals. Radiochim Acta 108:873–877. https://doi.org/10.1515/ract-2020-0006

    Article  CAS  Google Scholar 

  33. Dasa A, Chandrakumar KRS, Paul B, Chopade SM, Majumdar S, Singh AK, Kain V (2020) Enhanced adsorption and separation of zirconium and hafnium under mild conditions by phosphoric acid based ligand functionalized silica gels: insights from experimental and theoretical investigations. Sep Purif Technol 239:116518. https://doi.org/10.1016/j.seppur.2020.116518

    Article  CAS  Google Scholar 

  34. Takamiya K, Fukunishi T, Tsujito R, Fukutani S, Takahashi T, Shibata S, Uchida S (2007) Adsorption of fission products onto soils using a fission multitracer. J Radioanal Nucl Chem 273:195–198. https://doi.org/10.1007/s10967-007-0735-7

    Article  CAS  Google Scholar 

  35. Kubica B, Tuteja-Krysa M, Godunowa H, Szeglowski Z (2001) Adsorption of Hf and Nb on copper and zinc hexacyanoferrate(II) from HCl and H2SO4 solutions. J Radioanal Nucl Chem 247(535):539

    Google Scholar 

  36. Dyer A, Kadhim FH (1989) Inorganic ion-exchangers for the removal of zirconium, hafnium and niobium radioisotopes from aqueous solutions. J Radioanal Nucl Chem 131:161–169

    Article  CAS  Google Scholar 

  37. Monroy-Guzman F, Trubert D, Le Naour C (2002) Adsorption behavior of Zr, Hf, Nb, Ta and Pa on macroporous anion exchanger in NH4SCN/HClO4 and NH4SCN/HF media. J Radioanal Nucl Chem 254:431–437

    Article  CAS  Google Scholar 

  38. El-Sweify FH, El-Shazly EAA, Salama SM (2018) Comparison of some organic and inorganic ion exchangers concerning the sorption of Ce(III), Te(IV), Zr(IV), Hf(IV) and Nb(V). Radiochim Acta 106:207–2216. https://doi.org/10.1515/ract-2017-2789

    Article  CAS  Google Scholar 

  39. Sari A, Tuzen M (2014) Cd(II) adsorption from aqueous solution by raw and modified kaolinite. Appl Clay Sci 88–89:63–72. https://doi.org/10.1016/j.clay.2013.12.021

    Article  CAS  Google Scholar 

  40. Zhang H, Xu M, Wanga H, Lei D, Qu D, Zhai Y (2013) Adsorption of copper by aminopropyl functionalized mesoporous delta manganese dioxide from aqueous solution. Colloids Surf A Physicochem Eng Aspects 435:78–84. https://doi.org/10.1016/j.colsurfa.2012.12.037

    Article  CAS  Google Scholar 

  41. Chen JJ, Ahmad AL, Ooi BS (2013) Poly(N-isopropylacrylamide-co-acrylic acid) hydrogels for copper ion adsorption: equilibrium isotherms, kinetic and thermodynamic studies. J Environl Chem Eng 1:339–348. https://doi.org/10.1016/j.jece.2013.05.012

    Article  CAS  Google Scholar 

  42. An F, Gao B, Dai X, Wang M, Wang X (2011) Efficient removal of heavy metal ions from aqueous solution using salicylic acid type chelate adsorbent. J Hazard Mater 192:956–962. https://doi.org/10.1016/j.jhazmat.2011.05.050

    Article  CAS  PubMed  Google Scholar 

  43. Caliskan N, Kul AR, Alkan S, Sogut EG, Alacabey I (2011) Adsorption of Zinc(II) on diatomite and manganese-oxide-modified diatomite: a kinetic and equilibrium study. J Hazard Mater 193:27–36. https://doi.org/10.1016/j.jhazmat.2011.06.058

    Article  CAS  PubMed  Google Scholar 

  44. Shakir K, Ghoneimy HF, Hennawy IT, Elkafrawy A, Beheir SG, Refaat M (2011) Simultaneous removal of chromotrope 2B and radionuclides from mixed radioactive process wastewater using organo-bentonite. Eur J Chem 2:83–93

    Article  CAS  Google Scholar 

  45. Wu P, Zhang Q, Dai Y, Zhu N, Dang Z, Li P, Wu J, Wang X (2011) Adsorption of Cu(II), Cd(II) and Cr(III) ions from aqueous solutions on humic acid modified Ca-montmorillonite. Geoderma 164:215–219. https://doi.org/10.1016/j.geoderma.2011.06.012

    Article  CAS  Google Scholar 

  46. Bhatti HN, Amin M (2013) Removal of zirconium(IV) from aqueous solution by Coriolus versicolor: equilibrium and thermodynamic study. Ecol Eng 51:178–180. https://doi.org/10.1016/j.ecoleng.2012.12.078

    Article  Google Scholar 

  47. Lagergren S (1898) About the theory of so-called adsorption of soluble substances. Kungliga Suenska Vetenskapsakademiens Handlingar 24:1–39

    Google Scholar 

  48. Ritchie AG (1977) Alternative to the Elovich equation for the kinetics of adsorption of gases on solids. J Chem Soc Faraday Trans 1(73):1650–1653. https://doi.org/10.1039/F19777301650

    Article  Google Scholar 

  49. Weber WJ, Morris JC (1963) Kinetics of adsorption on carbon from solution. J Sanit Eng Div Am Soc Civ Eng 89:31–60

    Article  Google Scholar 

  50. Mahmoud MR, Seliman AF (2014) Evaluation of silica/ferrocyanide composite as a dual-function material for simultaneous removal of 137Cs+ and 99TcO4- from aqueous solutions. Appl Radiat Isot 91:141–154. https://doi.org/10.1016/j.apradiso.2014.05.021

    Article  CAS  PubMed  Google Scholar 

  51. Mahmoud MR, Soliman MA, Allan KF (2015) Adsorption behavior of samarium(III) from aqueous solutions onto PAN@SDS core-shell polymeric adsorbent. Radiochim Acta 103:443–456. https://doi.org/10.1515/ract-2014-2299

    Article  CAS  Google Scholar 

  52. Langmuir I (1918) The adsorption of gases on plane surfaces of glass, mica and platinum. J Am Chem Soc 40:1361–1403

    Article  CAS  Google Scholar 

  53. Freundlich HMF (1906) Over the adsorption in solution. J Phys Chem 57:385–470

    CAS  Google Scholar 

  54. Temkin MJ, Pyzhev V (1940) Kinetics of ammonia synthesis on promoted iron catalysts. Acta Physiochim USSR 12:327–356

    CAS  Google Scholar 

  55. Redlich O, Peterson DLA (1959) Useful adsorption isotherm. J Phys Chem 63:1024–1026

    Article  CAS  Google Scholar 

  56. Hamoud MA, Allan KF, Ayoub RR, Holeil M, Mahmoud MR (2021) Efficient removal of radiocobalt and manganese from their binary aqueous solutions by batch adsorption process using PAN/HDTMA/KCuHCF composite. Radiochim Acta 109:27–39. https://doi.org/10.1515/ract-2020-0078

    Article  CAS  Google Scholar 

  57. Petrucci RH, Harwood WS (1997) General chemistry: principles and modern applications, 7th edn. Prentice Hall, New Jersey, p 711

    Google Scholar 

  58. Mahmoud MR, Lazaridis NK (2015) Simultaneous removal of nickel(II) and chromium(VI) from aqueous solutions and simulated wastewaters by foam separation. Sep Sci Technol 50:1421–1432. https://doi.org/10.1080/01496395.2014.978456

    Article  CAS  Google Scholar 

  59. Mahmoud MR, Someda HH (2012) Mg–Al layered double hydroxide intercalated with sodium lauryl sulfate as a sorbent for 152+154Eu from aqueous solutions. J Radioanal Nucl Chem 292:1391–1400. https://doi.org/10.1007/s10967-012-1715-0

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ehab A. A. El Shazly.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Consent for publication

All of the authors consent to publish this manuscript.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mekawy, Z.A., El Shazly, E.A.A. & Mahmoud, M.R. Utilization of bentonite as a low-cost adsorbent for removal of 95Zr(IV), 181Hf(IV) and 95Nb(V) radionuclides from aqueous solutions. J Radioanal Nucl Chem 331, 3935–3948 (2022). https://doi.org/10.1007/s10967-022-08432-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10967-022-08432-9

Keywords

Navigation